Shaping the impacts of new technologies:

A CALL FOR NEW EUROPEAN MOBILITY POLICIES

Summary Presentation

Ruggero Schleicher-Tappeser
Gerd Leipold
For Rebecca Harms MEP

Berlin, 19 March, 2018

© for this document: Ruggero Schleicher-Tappeser & Gerd Leipold. Non-exclusive usage rights granted to The Greens/EFA. This version is not for commercial use – copyrights of images have not all been checked
The scale of the challenge posed by the mobility and transport transition

MOBILITY AND TRANSPORT

• Directly touch everybody’s daily life
 – Professional and private time schedules & spatial patterns
 – Budgets & status symbols
 – Relations to other people

• Have a huge impact on our environment
 – Air quality & noise
 – Use of public space
 – CO2 emissions

• Are central to European economies
 – Many Europeans employed in the automobile industry (> 12 million)
 – High R&D investments by the car industry (> 50 billion € per year)
 – Important infrastructure investment (> 100 billion € per year)

MOBILITY AND TRANSPORT ISSUES ARE HIGHLY EMOTIONAL

The transformation of the power sector is easy in comparison
2015 - A SHOCKING ALIEN: Deep changes ahead

- Electric & driverless
- Small & smart
- The new lifestyle?
- Competitor with huge financial resources
- High speed innovation
- Radically new technologies
- Will Silicon Valley take over?
- Incumbent car manufacturers reduced to subcontractors?
- European Suppliers going out of business?
- Uncanny intelligence
Fears & hopes: Triggers strong emotions: the dream of fast drivers

Tesla

luxurious, digital, unprecedented acceleration

Image: Tesla
Fears and hopes:
More cars, more congestion – only electric?
Fears & hopes:
Flexible, clean transport services for all?

Photo: Christophe Morin / Bloomberg
Fears & hopes: Driverless trucks

The nightmare of truck-drivers
The dream of logistics companies
Fears & hopes:
China leading: 16’000 electric buses in Shenzen
Fears and hopes: Asian Companies dominate battery cell manufacturing

COMPANIES
Projected global market share in 2019

<table>
<thead>
<tr>
<th>Company</th>
<th>Market Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panasonic</td>
<td>29%</td>
</tr>
<tr>
<td>SANYO</td>
<td>21%</td>
</tr>
<tr>
<td>LG Chem</td>
<td>9%</td>
</tr>
<tr>
<td>BYD</td>
<td>9%</td>
</tr>
<tr>
<td>CATL</td>
<td>9%</td>
</tr>
<tr>
<td>Samsung</td>
<td>6%</td>
</tr>
<tr>
<td>LISHEN</td>
<td>6%</td>
</tr>
<tr>
<td>CHINA WANGXIANG</td>
<td>5%</td>
</tr>
</tbody>
</table>

COUNTRIES
Projected domestic cell production 2015-2019

<table>
<thead>
<tr>
<th>Country</th>
<th>Production (MWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>67.800</td>
</tr>
<tr>
<td>Japan</td>
<td>49.843</td>
</tr>
<tr>
<td>South Korea</td>
<td>28.184</td>
</tr>
<tr>
<td>Germany</td>
<td>23.362</td>
</tr>
<tr>
<td>France</td>
<td>230</td>
</tr>
<tr>
<td>Italy</td>
<td>0</td>
</tr>
</tbody>
</table>

Source: RolandBerger /fka 2017
Fears & hopes: Uber & Co: private monopolies taking over?

Raquel Urtason / Uber
Fears & hopes: A danger for traditional mass transit?

Photo: Sophia Kembowski, dpa
Fears & hopes: Collapse of the European car industry?
Fears & hopes: Gaining new space in the cities
Fears & hopes: Rural Areas – Left behind?
Fears & hopes: Growing dense agglomerations

No place for individual cars
Fears & hopes: Bikers and pedestrians in Copenhagen

Unrivalled transport density
Fears & hopes: Robots for small-scale logistics
Trying to understand the force field: Exploring options for European politics
Three Drivers of Change

• **Technological innovation**
 offers disruptive opportunities worldwide:
 1. Electric drivetrain (*battery, power electronics*)
 2. Driverless vehicles (*artificial intelligence, sensors, communication*)
 3. Sharing platforms (*pervasive internet, cloud computing, artificial intelligence*)

• **Global competition**
 – from emerging economies (*China*)
 – from new players (*Silicon Valley*)
 – challenging incumbent vehicle manufacturers

• **Urbanisation**
 – Increasing share of population lives in cities
 – Urban areas get more dense → increasing problems with individual cars
 – Density & intensity of interaction increasingly important for economy
 – Changing urban lifestyles (*dense interaction, sharing, from ownership to services*)
Drivers of Change

Be prepared for disruptions!
Contrasting forces – dynamics of change are hard to predict

- Technical availability within two to five years

<table>
<thead>
<tr>
<th></th>
<th>Competitive compared to</th>
<th>Technical availability</th>
<th>Commercial availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric cars and trucks</td>
<td>conventional vehicles</td>
<td>2 years !</td>
<td>2 years !</td>
</tr>
<tr>
<td>Driverless vehicles</td>
<td>vehicles with professional drivers</td>
<td>3-5 years ?</td>
<td>depends on politics</td>
</tr>
<tr>
<td>Air taxis</td>
<td>conventional taxis</td>
<td>5 years ?</td>
<td>depends on politics</td>
</tr>
</tbody>
</table>

- Enticing benefits may push for rapid adoption
 - Impressive cost reductions *(up to 50% for passenger and freight transport)*
 - Important comfort improvements
 - Outstanding environmental benefits *(> 50% reduction in emissions)*

- Important vested interests at stake – retarding change seems a tempting option
 - Industrial assets in the car and oil industry *(>> € 100 billion)*
 - High-skilled car industry jobs *(11% of European manufacturing employment)*
 - Jobs of professional drivers *(> 4 mio)*

- Changing lifestyles may take time
 - EU 2015: 250 million cars / 500 million inhabitants

- Delaying change → high risk in a competitive environment

- Delaying the debate and preparation of change
 → loss of opportunities to shape conditions
 → risk of growing fear and populist reactions
Drivers of Change

Business at large

EU vehicle industry

Mobility & transport system

Politics

Civil society
Key transformation paths

<table>
<thead>
<tr>
<th>Drivers</th>
<th>Tech innovation</th>
<th>Global competition</th>
<th>Urbanisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>low tech → high tech</td>
<td>products → services</td>
<td>low density → high density</td>
</tr>
</tbody>
</table>

PASSENGERS

- **A** Individual high motorisation
 - conventional private cars
 -远端
 - Shared high-power vehicles
 - integrated flexible driverless electric
 - public mobility services

- **B** Individual low-power modes
 - cycling, walking, e-bikes, micro-vehicles, services, infrastructures
 -近端

FREIGHT

- **C** conventional trucks
 -远端
 - Automatic large-scale logistics systems
 - Driverless electric trucks, IoT, robots

- **D** conventional vans
 -近端
 - City- and micro-logistics systems
 - e-bikes, robot carriages, interchanges, depots
Mobility & Transport System

Key transformation path A:

Conventional private car \rightarrow advanced **shared** mobility services

<table>
<thead>
<tr>
<th></th>
<th>COMFORT</th>
<th>ENVIRONMENT</th>
<th>COSTS</th>
<th>SOCIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Conventional private car</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 1 | Electric vehicle | Drastic reduction of emissions | | Better health
| | | | | Fewer jobs |
| 2 | Autonomous electric vehicle | Optimised driving | | Less accidents
| | | | | Less jobs in operation |
| 3 | Public mobility service with AEV | Less vehicles, less parking space | Drastic capital cost reduction \rightarrow widespread adoption | No need for own car, better accessibility
| | | | | Fewer jobs |
| 4 | Shared ride driverless mobility service | Slightly longer trips | Less vehicles circulating, less infrastructure needed | Less operational costs, less infrastructure
| | | | | Affordable transport for all
| | | | | challenge: urban/rural, modal split |
| 5 | Integrated flexible inter-modal mobility service | Seamless comfort | Optimised tariffs across system | |

Key transformation path A:

Conventional private car \rightarrow advanced shared mobility services

- **Conventional private car**
 - **Comfort:**
 - **Environment:** Drastic reduction of emissions
 - **Costs:**
 - **Social:** Better health, Fewer jobs

- **Electric vehicle**
 - **Comfort:**
 - **Environment:** Drastic reduction of emissions
 - **Costs:**
 - **Social:** Better health, Fewer jobs

- **Autonomous electric vehicle**
 - **Comfort:**
 - **Environment:** Optimised driving
 - **Costs:**
 - **Social:** Less accidents, Less jobs in operation

- **Public mobility service with AEV**
 - **Comfort:**
 - **Environment:** Less vehicles, less parking space
 - **Costs:** Drastic capital cost reduction \rightarrow widespread adoption
 - **Social:** No need for own car, better accessibility, Fewer jobs

- **Shared ride driverless mobility service**
 - **Comfort:** Slightly longer trips
 - **Environment:** Less vehicles circulating, less infrastructure needed
 - **Costs:** Less operational costs, less infrastructure
 - **Social:** Affordable transport for all

- **Integrated flexible inter-modal mobility service**
 - **Comfort:** Seamless comfort
 - **Environment:** Optimised tariffs across system
 - **Costs:**
 - **Social:**

Comparative Analysis:

<table>
<thead>
<tr>
<th></th>
<th>Better</th>
<th>Worse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key transformation path A</td>
<td>Advanced shared mobility services</td>
<td></td>
</tr>
<tr>
<td>Conventional private car</td>
<td>Comfort, Environment, Costs, Social</td>
<td></td>
</tr>
<tr>
<td>Electric vehicle</td>
<td>Comfort, Environment, Costs, Social</td>
<td></td>
</tr>
<tr>
<td>Autonomous electric vehicle</td>
<td>Comfort, Environment, Costs, Social</td>
<td></td>
</tr>
<tr>
<td>Public mobility service with AEV</td>
<td>Comfort, Environment, Costs, Social</td>
<td></td>
</tr>
<tr>
<td>Shared ride driverless mobility service</td>
<td>Comfort, Environment, Costs, Social</td>
<td></td>
</tr>
<tr>
<td>Integrated flexible inter-modal mobility service</td>
<td>Comfort, Environment, Costs, Social</td>
<td></td>
</tr>
</tbody>
</table>

The European car industry is falling behind

<table>
<thead>
<tr>
<th>Category</th>
<th>Engineering & Production</th>
<th>Technology</th>
<th>Economics</th>
<th>Politics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mechanical Engineering</td>
<td>Electric drive</td>
<td>Ability to invest</td>
<td>Overall strategy</td>
</tr>
<tr>
<td></td>
<td>Vehicle Production</td>
<td>Autonomous drive</td>
<td>Home market</td>
<td>Government support</td>
</tr>
<tr>
<td></td>
<td>Battery Production</td>
<td>Software</td>
<td>Sharing platform</td>
<td>Regulation autonomous driving</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region</th>
<th>Europe</th>
<th>USA</th>
<th>China</th>
<th>Other Asia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering & Production</td>
<td>low</td>
<td>high</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>Technology</td>
<td>low</td>
<td>high</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>Economics</td>
<td>low</td>
<td>high</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>Politics</td>
<td>low</td>
<td>high</td>
<td>low</td>
<td>low</td>
</tr>
</tbody>
</table>
Important role for European economies

Car production in Europe 2016

- EU motor vehicle manufacturing employment: 2.5 mio
 - EU: 8.5% of manufacturing employment
- Investment of EU car industry: €50bn / a
 - Germany: 35% of all R&D investments

Car density 2015

- USA: 821 cars/1000 inhabitants
- EU: 573
- Russia: 358
- Brasil: 206
- China: 118
- India: 22

© Statista
Drivers of Change

Business at large

EU vehicle industry

Mobility & transport system

Politics

Civil society
Business at large may gain in transformation that avoids deindustrialisation

- **Industry and trade in general** are very interested in lowering transport costs and ensuring smooth traffic
 - As far as electric and driverless vehicles, traffic control systems and more efficient use of infrastructure can help in this, industry will support their introduction

- The **oil industry** was a heavy supporter of the individual fossil fuel car in national and international politics – their focus may have shifted to strongly growing economies
 - The transport sector makes up for more than half of the oil consumption
 - The revenues of European oil companies and car companies are comparable
 - *2017: 5 largest Oil (Shell, Total, BP, ENI, OMV): $ 627 bn, 5 largest Car (VW, Daimler, BMW, Peugeot, Renault): $ 631 bn*
 - Employment in the oil industry is much smaller than in the car industry
 - The oil industry is slow in shifting towards other energy sources

- **Electric power companies** are interested in the electrification of the transport sector. They understand that this must be associated with a shift towards renewable energy.

- The **construction industry** may profit from more sophisticated infrastructure requirements but needs to adapt (*infrastructure ~ 10% of turnover*)

- Most industries benefit from **innovation impulses and R&D spending** of the car industry → innovative transformation is welcome, decline is feared

- **Tourism and other personal services** may profit from easier and cheaper transport
 - However, equilibrated development is essential for destinations in peripheral areas

- **ICT industries** would clearly be winners of a rapid transformation of the mobility sector
Drivers of Change

Business at large

EU vehicle industry

Politics

Mobility & transport system

Civil society

Drivers

Business at large

EU vehicle industry

Politics

Mobility & transport system

Civil society
Attitudes are changing

• Car ownership and driving have become less attractive in industrialised countries
 USA: drivers license in the 16 to 44 age group: 1983: 91,8%, 2014: 76,7%

• Bicycles, electric bicycles and shared bicycles have become very popular
 China sales 2017: Passenger vehicles 24.72 mio, electric bikes 15.72 mio.

• Metropolitan cities rethink the role of car
 London will introduce a ultra low emissions zone on April 8
 Paris has banned cars from the Seine river, pioneered bicycle plans

• “Active traffic”: Health aspects of transport increasingly recognised
 Habitual walking and biking as daily exercise

• New actors in the mobility debate
 Trade unions, regions with car manufacturers, small and medium scale cities
Drivers of Change

Business at large

EU vehicle industry

Mobility & transport system

Civil society

Politics
Politics can shape the future of mobility in Europe

Disruptive new technologies, global competition and urbanisation will cause a rapid and thorough change of mobility and transport in Europe. Politics can influence how.

<table>
<thead>
<tr>
<th>potential problems</th>
<th>direct consequences</th>
<th>potential benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>• High job losses in manufacturing and traditional mobility jobs</td>
<td>• European car manufacturers face new competitors</td>
<td>• Reduction of noise and air pollution</td>
</tr>
<tr>
<td>• Diverging interests between European countries</td>
<td>• Fast shift to electric drive</td>
<td>• Reduction of Greenhouse gas emissions</td>
</tr>
<tr>
<td>• Deindustrialisation of now strong regions</td>
<td>• Lower cost of mobility and transport</td>
<td>• Reduced number of vehicles, freeing up inner city space</td>
</tr>
<tr>
<td>• Widening the gap between rich and poor and between metropolitan and rural areas</td>
<td>• Value chain will shift from vehicles to mobility services</td>
<td>• Increased mobility for people with limited mobility</td>
</tr>
<tr>
<td>• Loss of European innovation capacity and competitiveness</td>
<td>• Increased use of autonomous vehicles</td>
<td>• Comfortable integrated transport system requiring less infrastructure</td>
</tr>
</tbody>
</table>

European politics cannot stop the change. Delaying change, could jeopardise the competitiveness of European economies. Only politics can tip the balance in favour of the common good.
Diverging interests of EU member states and their neighbours

<table>
<thead>
<tr>
<th>Economic importance of car sector</th>
<th>Jobs in manufacturing</th>
<th>Jobs in services (truck drivers etc)</th>
<th>Openness to shared use</th>
<th>Status of digitalisation</th>
<th>Use of bicycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Have nots</td>
<td>Work horse</td>
<td>Power club</td>
<td>Small & modern</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Greece | Romania | Bulgaria | Croatia | Serbia | Macedonia | Poland | Slovenia | Slovakia | Hungary | Czech R | Spain | Portugal | France | Germany | Italy | UK | Denmark | Switzerland | Sweden | Netherlands | Austria | Belgium | Belgium |
Politics

Politics has to deal with many ACTORS:
A wide range of strong interests

<table>
<thead>
<tr>
<th>Industry at large</th>
<th>EU vehicle industry</th>
<th>Mobility & Transport System</th>
<th>Politics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy supply industry</td>
<td>Road vehicle manufacturers</td>
<td>Vehicle service industry</td>
<td>Cities</td>
</tr>
<tr>
<td>Oil companies, gas stations, electric power companies, distribution grids</td>
<td>Premium brands, mass market brands, trade organisations</td>
<td>Car sales, repair shops, parking industry,</td>
<td>Metropolitan cities, medium-size cities</td>
</tr>
<tr>
<td>Transport infrastructure industry</td>
<td>Component supply chain</td>
<td>Mobility and transport services</td>
<td>Regions</td>
</tr>
<tr>
<td>Construction industry, cement and steel industry</td>
<td>Large and multinational suppliers, SMEs</td>
<td>Railways, logistics companies, airlines, airports, local and regional public transport, taxi companies</td>
<td>Peripheral and rural areas, mixed regions</td>
</tr>
<tr>
<td>Users of mobility & transport services</td>
<td>Rail and aircraft industry</td>
<td>Trade unions in services</td>
<td>National and European politics</td>
</tr>
<tr>
<td>Industry, trade</td>
<td>Rolling stock industry, rail system providers, aerospace industry</td>
<td>in manufacturing</td>
<td>governments, regulation agencies, advisory structures, intergovernmental bodies, EU institutions</td>
</tr>
<tr>
<td>Trade Unions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in manufacturing</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Civil society

Climate organisations, environmental organisations, consumer groups, ad hoc citizen groups, research
Actors’ positioning: Shared ownership & ride

- EU vehicle industry
- Business at large
- Civil Society
- Politics

Center: positive
Edge: negative
DEVELOPING NEW EUROPEAN MOBILITY POLICIES
Europe has globally leading vehicle industries

- Premium brand & mass market car manufacturers (No. 1, 2, 3 & 1)
- Truck and commercial vehicle manufacturers (1, 2, 4)
- Rail industries: rolling stock and infrastructure (2, 4, 6, 7)
- Aerospace industries (1)
- Premium Two-Wheel-Industries

Europe has globally leading logistics industries

- World leaders in Integrated logistics (1, 2, 4)
- World leaders in maritime logistics (1, 2, 3)

Europe has unique flexible industrial skills

- Globally leading highly specialised SMEs in B2B markets
- Long tradition in flexible specialisation in B2C and B2B markets

Europe has a long tradition of dense civic urban life

- A culture of dense and varied cities with high intensity of interchanges
- A tradition of striving for high living standards and accessibility on the countryside
- A tradition of high environmental and social awareness
European societies have dual objectives in view of the deep changes in the mobility sector:

- To realise the potential environmental and social benefits of new technologies
- To maintain the strength of the industrial mobility sector in Europe

Success depends on the following conditions:

- A rapid shift towards space-efficient flexible mobility services
 - shared use of high-tech high-power vehicles (“passive mobility”)
 - a framework for public transport systems
 - more attention for individual low-power mobility (“active mobility”)
- A forward looking industrial policy for Europe based on this orientation

All these conditions have to be fulfilled to meet the objectives. However, many constituencies do not support them all yet.
Developing New European Mobility Policies
Shared use of motorised vehicles is key

1. Shared ownership / mobility services
 - Private cars are standing idle 95% of the time
 - Shared cars (maintaining individual use): up to 10 times more intense use
 • Reduce capital costs
 • Avoid degradation without use
 • Require less parking space, less public space

2. Shared rides
 - Individual car use: vehicle occupancy in Berlin: 1.3 passengers
 - Shared rides (ride pooling in normal cars, shuttles, buses, mass transit):
 • More intense use
 • Reduce capital costs
 • Require less (road) infrastructure, less public space

New technologies facilitate shared ownership and shared rides:
 - Driverless vehicles
 - User-friendly on-demand systems
 - Intelligent flexible routing
Developing New European Mobility Policies
A new framework for public transport

• Publicly accessible mobility services are public transport
 – The shift from ownership to services is a shift from private to public transport
 – Mass transit and shared ride allow for high density, individual cabs do not

• The success of Uber has shown that neither laissez-faire nor a simple ban are solutions to the challenge of new privately operated mobility services
 – Sharing platforms bring important economic benefits to users and vehicle operators even before the introduction of driverless vehicles
 – Platforms having strong network effects (see Google, Facebook) tend to form monopolies
 – Such private monopolies may strive for vertical integration of functions giving them a huge influence on whole sectors of public life and the economy

• We can learn from previous experiences in telecommunication, rail and power sector regulation:
 – Also there, a combination of new technologies and ideologically driven “liberalisation” had lead to the threat of dominating private monopolies
 – Gradually, national and European regulation agencies are learning how to define different roles in a sophisticated “market design”, ensuring the ongoing functioning of market mechanisms and the pursuit of public goals

• We need an appropriate “market design” for an integrated public transport system including competing private operators for specific roles
 – Natural monopolies such as the use of public space, roads, rails, traffic management and traffic communication structures must remain subject to public decisions
Developing New European Mobility Policies

Ideological preferences in regulation

LEFT

- Direct control
- State monopolies
 - Slow innovation
 - Bureaucracy risks to beat public interests

RIGHT

- Market design
 - Contained markets
 - Specific rules
 - Market roles
 - Competing companies in several roles & temporary concessions for natural monopolies
 - Competition
 - Innovation
 - Public interests respected through rules

- Minimal regulation
 - Free market
 - Unhindered use of network effects
 - Private monopolies
 - Bureaucracy
 - Slowing innovation
 - Profit beats public interests

- Competent & independent regulation agency must set and continually adapt rules (e.g. central banks, Bundesnetzagentur...)
Data governance

• **Data will play a key role for a variety of functions**
 – Planning and managing infrastructure
 – Developing, producing and managing vehicles
 – Managing traffic flows
 – Managing vehicle fleets
 – Independent driverless navigation
 – Connected driverless navigation
 – Matching mobility offers and demand
 – Managing Payments
 – Marketing at all levels

• Large companies try to control, monopolise, and connect data from these different functions – potential network effects and profits are huge

• **Appropriate design of markets and data governance should distinguish and connect these functions** so as to
 – Ensure user privacy
 – Avoid uncontrolled monopolisation of infrastructure functions
 – Ensure public access to data relevant for infrastructure, spatial planning and further development of regulatory framework
 – Ensure competition and diversity in all markets
 – Provide opportunities for small companies and innovation
Low power mobility ("active mobility")

- Short distances do not require high speeds, heavy vehicles and high-power motorisation
- Short distances are much better served by
 - low speeds
 - no or very light vehicles
 - no or low-power motorisation
 - low space requirements
 - high flexibility
 - direct personal control – active mobility
 increasingly combined with highly efficient tools requiring low efforts
 - interoperability with high-power modes for longer distances
- Low power mobility includes
 - **Passenger transport**: Walking, biking, e-bikes, wheelchairs, low-speed vehicles...
 - **Freight transport**: bikes, small freight vehicles, delivery robots...
- Health benefits from physical movement are increasingly appreciated
Developing New European Mobility Policies

European industry policy: new activities & jobs

• **Enhanced transport infrastructure:** electric, communication, management
 – Charging infrastructure, wireless charging, integrating photovoltaics in transport structures
 – Communication for autonomous driving, navigation systems, data management
 – Flexible traffic management on road, rail and air corridors: combining peer-to-peer and central control

• **Broader approach to public transport:** new concepts, tools and vehicles
 – Concepts and management tools for flexible, integrated, multi-modal public transport systems
 – Driverless electric vehicles of all sizes including maintenance and charging infrastructure, fleet management
 – Comfortable interchange points, stations, luggage handling...
 – Navigation, micro-navigation, reservation & payment systems
 – Special vehicles: Intermodal pod systems, indoor vehicles, funiculars

• **Freight & logistics:** boom with IoT and e-commerce
 – The largest logistics and trade companies are based in Europe
 – Advanced trucks and special purpose vehicles, drones of all sizes
 – Concepts, software, sensors & communication equipment for integrated logistics systems
 – Intermodal concepts, automatic interchanges, small container systems
 – Micro-logistics & distribution: storage, commissioning & distribution robots, city logistics, box systems
 – New service concepts, local service and distribution centres

• **Personal micro-vehicles and services:** new high-tech comfort
 – Bicycles, e-bikes, skates, scooters, rollators, personal robot carriage...
 – Personal mobility services, device maintenance, sharing services, links to freight distribution
New European Mobility Policies

European industry policy: tools

• Ensuring monitoring and setting up strategy capacities

 Need for stronger EU capacities for integrated strategic thinking

• Developing a shared vision

 – A shared vision developed in a broad debate can help to align actions across Europe

• Ensuring appropriate frame conditions for realising the vision

 – All policies must be analysed regarding their support for realising the vision

• Defending European global players

 – Confronted with determined Chinese and other strategies, key European players have to be identified and defended against take-overs

• Facilitating the transition of incumbent industries

 – Key incumbent industries may need support in the transition. A competent and transparent agency must ensure that change according to the vision is embraced.

• Taking care of those affected by change

 – Early orientation and requalification of workforce needed to reduce fears. In a larger context: do we need new social security approaches? Most affected is the unemployed youth.

• Facilitating the development of new champions

 – A start-up hype for digital business is not sufficient for covering the whole range of needs
Developing New European Mobility Policies:

Start immediately: Organise a broad learning process

- Enable cities and regions to experiment with new opportunities and rules
 - European and national governments need to open strict rules and support experimenting
 - New alliances have to learn how to cooperate
 - Cities are strong and motivated actors, make use of the Pact of Amsterdam

- Start a broad European discussion process
 - Identifying challenges and opportunities
 - Developing a European vision
 - Defining objectives
 - Forging alliances

Europe has a chance to play a key role on the way to a sustainable, flexible, comfortable and at the same time cheaper transport system – but only if we actively discuss and seize the opportunities
Beyond Europe

• A huge growth market

<table>
<thead>
<tr>
<th>Country</th>
<th>Vehicles per 1000 people (2014)</th>
<th>Population (in mio)</th>
<th>Population Growth (in %) per year</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>105</td>
<td>1,415</td>
<td>1.8</td>
</tr>
<tr>
<td>India</td>
<td>31</td>
<td>1,354</td>
<td>1.9</td>
</tr>
<tr>
<td>Vietnam</td>
<td>23</td>
<td>96</td>
<td>1.1</td>
</tr>
<tr>
<td>Brazil</td>
<td>206</td>
<td>210</td>
<td>0.8</td>
</tr>
<tr>
<td>Central and South America</td>
<td>187</td>
<td>831</td>
<td>1.2</td>
</tr>
<tr>
<td>South Africa</td>
<td>165</td>
<td>57</td>
<td>2.5</td>
</tr>
<tr>
<td>Togo</td>
<td>2</td>
<td>8</td>
<td>2.5</td>
</tr>
<tr>
<td>Africa</td>
<td>35</td>
<td>1,287</td>
<td>2.5</td>
</tr>
<tr>
<td>(Europe, west)</td>
<td>590</td>
<td>194</td>
<td>0.0</td>
</tr>
<tr>
<td>(USA)</td>
<td>816</td>
<td>323</td>
<td>0.4</td>
</tr>
</tbody>
</table>

• Huge challenges in particular for Megacities
 - Fast growth
 - Weak governance
 - Rapid investment in infrastructure needed:
 - Electricity
 - Water
 - Sanitation
 - Housing
 - Road and Rail
 - Mass transit

• Temptation to dump old technology

• Effect on climate depends on
 - Growth of vehicles numbers
 - Type of vehicles (fossil or electric)
 - Speed of decarbonisation
 - Speed of shift to electric vehicles