R. Schleicher

ZUR BESTIMMUNG DER ATMOSPHAERISCHEN AUSBREITUNGSFAKTOREN VON RADIOAKTIVER ABLUFT AUS KERNKRAFTWERKEN

Messung der Konzentration von Xe-133 in Umgebungsluft

Zur Wahl eines Ausbreitungsmodells für die Umgebung des Kernkraftwerks Mühleberg

R. SCHLEICHER

BERN 1977

Lizentiatsarbeit an der philosophisch-naturwissenschaftlichen Fakultät der Universität Bern, Physikalisches Institut, Abteilung für Low Level Counting und Nukleare Geophysik

INHALTSVERZEICHNIS

I EINLEITUNG	5
II MESSUNG DER KONZENTRATION VON Xe-133 IN UMGEBUNGSLUFT	ϵ
1. Problemstellung	6
2. Das verwendete Prinzip	6
3. Die Leistungsfähigkeit der Methode	6
4. Probennahme im Feld 4.1. Stromversorgung 4.2. Pumpvorrichtung 4.3. Luftzelt	8 8 8
5. Aufbereitung der Proben 5.1. Aufbereitungsapparatur 5.2. Ausheizapparatur 5.3. Messgefässe, Volumenreduktion	8 10 11
6. Messung der Proben 6.1. Der Detektor 6.2. Die Messgefässe 6.3. Nachweisgrenzen	12 12 12 12
7. Eichung, Ausbeute, Reproduzierbarkeit 7.1. Eichung der Messgefässe 7.2. Ausbeute 7.3. Volumenmessung, Fehler	15 15 16
III ZUR WAHL EINES AUSBREITUNGSMODELLS FUER DIE UMGEBUNG DES KERNKRAFTWERKS MUEHLEBERG	17
1. Allgemeines	17
 Meteorologische Grundlagen 2.1. Luftbewegungen 2.2. Stabilitätsgrade 2.3. Das logarithmische Windprofil 2.4. Der Wind in der planetarischen Grenzschicht 2.5. Der Einfluss lokaler geographischer Gegebenheiten 2.6. Diffusion 	18 18 20 21 22 23
3. Diffusionstheorien und Ausbreitungsmodelle 3.1. Zwei grundlegende Ansätze 3.2. K-Theorie 3.3. Box-Modelle 3.4. Die Particle-in-Cell-Methode 3.5. Das statistische Diffusionsmodell	24 24 25 26 26
 Anforderungen an ein Ausbreitungsmodell für die Umgebung des Kernkraftwerks Mühleberg 	28

5. Statistische Ausbreitungsmodelle 5.1. Theoretische Grundlagen 5.2. Diffusionsparameter und Diffusionskategorien 5.3. Bestimmung von Langzeitausbreitungsfaktoren 5.4. Berücksichtigung des Windprofils 5.5. Einfluss von Windrichtungsänderungen 5.6. Schwachwindlagen und Inversionen 5.7. Berücksichtigung und Topographie 5.8. Kurzbeschreibung einiger Computerprogramme 5.9. Vor- und Nachteile des statistischen Ausbreitungsmod	30 30 31 33 34 34 35 36 36 36
6. Die Particle-in-Cell Methode 6.1. Grundlagen 6.2. Bestehende Rechenprogramme und erste Anwendungen 6.3. Bestimmung der Diffusionskoeffizienten 6.4. Bestimmung des Windfeldes 6.5. Beurteilung	39 39 42 43 43
7. Anwendung des statistischen Diffusionsmodells auf die Erge der ersten Ausbreitungsexperimente bei Mühleberg 7.1. Die Ausbreitungsexperimente 7.2. Verwendete Formeln und Parameter 7.3. Ergebnisse mit üblichen Eingangsdaten 7.4. Parameterstudien und Höhenkorrektur 7.5. Ergebnisse der Parametervariationen 7.6. Schlussfolgerung	bnisse 45 45 46 56 56
8. Mögliche Entwicklung eines Modells für die Umgebung des KK 8.1. Wahl der Berechnungsmethode 8.2. Erforderliche Messungen mit der Xe-133-Methode 8.3. Erforderliche meteorologische Daten 8.4. Ausblick	M 68 68 69 69
LITERATURVERZEICHNIS	70
ANHANG A: DIE ENTWICKLUNG DER MESSMETHODE	A 1
 Die anfängliche Methode 1.1. Anlage und Konzeption von Wiest 1.2. Erste Arbeiten damit 1.3. Ausheizexperimente 	A 1 A 1 A 2
 Die neue Methode 2.1. Das neue Konzept 2.2. Erste Entwicklungen 2.3. Die erste Messkampagne 2.4. Erste Ausbeutemessungen und Eichungsversuche 2.5. Entwicklung der Probennahmestationen 2.6. Entwicklung neuer Messgefässe 	A 5 A 5 A 6 A 6 A 7 A 7
ANHANG B : TECHNISCHE ANGABEN DER ENDE 1976 VERWENDETEN APPAR	ATUREN B 1
1. Feldausrüstung	в 1
2. Ausheizapparatur	в 1
3. Aufbereitungsapparatur	в 3
4. Messgefässe	в 3

5. Abfüllanlage für Eichgas	в 6
 6. Gebrauchsanweisung 6.1. Probennahme im Feld 6.2. Aufbereitung der Proben 6.3. Messung der Proben 6.4. Auswertung 6.5. Abfüllen von Eichgas 	B 8 B 8 B 9 B 10 B 11
ANHANG C : MESSERGEBNISSE	C 1
 Feldausrüstung 1.1. Test der Luftpumpe Pl 1.2. Lagerausbeute von Luftbehältern 	C 1 C 1 C 2
 Aufbereitung Probenvolumen nach der Aufbereitung Druck im Messgefäss 	C 4 C 4 C 4
3. Messung3.1. Nulleffekt3.2. Eichung der Messgefässe	C 5 C 5 C 6
4. Ausbeute und Reproduzierbarkeit 4.1. Ausbeutemessungen 4.2. Reproduzierbarkeit und Messgeometrie	C 7 C 7 C 8
5. Ausheizexperimente 5.1. mit Massenspektrometrie 5.2. mit Radioxenon	C 9 C 9 C 9
6. Entwicklung der Messgefässe6.1. Eichung der alten Messgefässe6.2. Versuche mit Plastik-Messgefässen	C 10 C 10 C 10
7. Vorversuche im Feld7.1. Erste Feldmessungen7.2. Kleine Kampagne Sommer 1975	C 13 C 13 C 13
ANHANG D : BERECHNUNGEN	D 1
1. Zwischenergebnisse der Parametervariationen	D 1
2. Das Rechneprogramm	D 20
3. Mehrfache Variationen	D 23

ি .

-

Ich möchte all jenen herzlich danken, die am Zustandekommen dieser Arbeit beteiligt waren. Besonderer Dankt gebühr Herrn Dr. Loosli, der die Arbeiten betreut und mit vielen Anregungen geholfen hat, sowie Herrn H. Völkle, von der KUeR in Freiburg, der die Messungen auf dem Ge-Li-Detektor durchgeführt und wichtige Hinweise gegeben hat. G. Schriber von der BKW stellte die Messergebnisse der ersten elf Ausbreitungsversuche bei Mühleberg zur Verfügung. Ohne die Mitarbeit von P.Wittwer und U.Maurer wäre der Aufbau der Apparaturen nicht möglich gewesen. Frau T.Riesen hat für eine reibungslose Administration gesorgt. Schliesslich möchte ich Prof. H. Oeschger danken, der wertvolle Hinweise gegeben und ermöglicht hat, dass diese Arbeit in der Abteilung für Low Level Counting und Nukleare Geophysik durchgeführt werden konnte.

I EINLEITUNG

Die Eingriffe des Menschen in die Natur nehmen in Zahl und Bedeutung ständig zu, eine vorherige Abschätzung der Auswirkungen wird daher immer wichtiger. Die wachsende Macht der Technik bringt eine immer grössere Zerstörungsgewalt mit sich. Technische Fehlkonstruktionen und mangelnde Kenntnis der beteiligten oder beeinträchtigten Naturvorgänge können beim Umfang heutiger Grossprojekte katastrophale Folgen haben.

Am Problem der atmosphärischen Schadstoffausbreitung wurde schon seit Jahrzehnten gearbeitet. Mit zunehmender Dichte der Industrialisierung, wachsendem Umweltbewusstsein und dem Bau von Kernkraftwerken ist es in den letzten Jahren besonders aktuell geworden.

Im Zusammenhang mit kerntechnischen Anlagen lassen sich zwei Problemkreise unterscheiden: - Die Langzeitbelastung der Umgebung durch den Normalbetrieb (Abgabelimiten, Standortwahl) - Abschätzung der Auswirkung von Störfällen (Standortwahl, Konstruktion, Unterlagen für den Ernstfall).

Diese Arbeit beschränkt sich auf die atmophärische Ausbreitung von inerten, gasförmigen, radioaktiven Schadstoffen. Ablagerungs- und Auswascheffekte von Aerosolen, biologische Anreicherung und Methoden der Dosisberechnung werden nicht behandelt.

Die Theorie der atmosphärischen Diffusion steht noch in den Anfängen. Die zu beschreibenden Vorgänge sind sehr komplex und von einer grossen Zahl von Faktoren abhängig. Für die Erstellung von Modellen müssen beträchtliche Vereinfachungen angemommen werden, die die Anwendbarkeit stark einschränken. In Teil III wird ein Ueberblick über den heutigen Stand gegeben.

Diese Arbeit entstand als erster Teil eines Projektes der KUeR zur Bestimmung der Ausbreitungsfaktoren in der Umgebung des Kernkraftwerks Mühleberg bei Bern. Dort ist die Topographie sehr kompliziert, so dass die Anwendung der üblichen Ausbreitungsmodelle fragwürdig ist. Zur Entwicklung eines geeigneten Modells ist daher eine experimentelle Ueberprüfung unerlässlich. Xe-133 macht ca 90 % der vom KKM abgegebenen Aktivität aus. Deshalb wurde eine Methode zur Messung der Konzentration von Xe-133 in Umgebungsluft entwickelt.

II MESSUNG DER KONZENTRATION VON XE-133 IN UMGEBUNGSLUFT

1. PROBLEMSTELLUNG

Xe-133 hat eine Halbwertszeit von 5,27 Tagen und sendet im wesentlichen β^- -Strahlen von 0,364 MeV (99,3 %) und γ -Strahlen von 81 keV (in 37 % der Zerfälle) aus (Lederer, 1968, siehe Literaturverzeichnis).

Die Betastrahlung liesse sich in einem Proportionalzählrohr messen, was jedoch einen hohen Aufwand erfordert, da das Xe zumindest frei von Sauerstoff und Stickstoff sein müsste.

Es empfiehlt sich daher, mit einem Ge-Li-Detektor die Gamma-Linie zu messen, dabei kommt es nicht darauf an, wie rein das Xenon ist.

Bei der direkten Messung von Luft mit dem Ge-Li wäre die Empfindlichkeit jedoch zu klein. Aus einem grossen Luftprobenvolumen muss also das Xe grob abgetrennt werden.

Aus-frieren von Xe aus der Luftprobe ist wegen des kleinen Partialdruckes nicht möglich. Chemisches Entfernen von O2 und N2 wäre bei den erforderlichen Volumina zu aufwendig. Am einfachsten schien selektive Sorption mit Aktivkohle zu sein. Da es nicht möglich ist, das Xenon innerhalb von ein paar Stunden vollständig auszuheizen, muss die Aktivkohle mit dem Xenon direkt auf den Ge-Li-Detektor gebracht werden. Aus diesen Gründen wurde beschlossen, von der von Kahn et al. (1970) beschriebenen Methode auszugehen und diese weiterzuentwickeln. Eine wesentliche Erhöhung der möglichen Probenzahl wurde dadurch erreicht, dass die Luft im Feld zumächst in Behälter geblasen wird und die Abtrennung des Xenon erst im Labor erfolgt.

2. DAS VERWENDETE PRINZIP

Im Feld wird mit bis zu 16 tragbaren, automatischen Stationen die Luft in Plastiksäcke geblasen. Jede Luftprobe hat ein Volumen von ca. 1 m³. Die Probennahme ist kontinuierlich und dauert zwischen 1/4 und 2 Stunden (einstellbar). Im Labor wird dann die Luft mit Molekularsieb getrocknet und durch gekühlte Aktivkohle gepumpt. Dort wird das Xenon und ein kleiner Teil der anderen Gase absorbiert. Die kalte Aktivkohle wird in ein spezielles Messgefäss umgefüllt, aus dem anschliessend die Luft abgesaugt wird. Schliesslich wird die Aktivität an der Aktivkohle im Messgefäss auf einem Ge-Li-Detektor direkt gemessen.

3. DIE LEISTUNGSFAEHIGKEIT DER METHODE

Mit einem geringen Aufwand lassen sich auf diese Weise eine verhältnismässig gute Empfindlichkeit und ausreichende Genauigkeit erreichen. Die Nachweisgrenze liegt bei 15 pCi/m³ (siehe Abschnitt 6.3.).

Der Fehler der Absoluteichung beträgt \pm 7,2 %, der zufällige Fehler der Einzelmessungen liegt bei \pm 5,9 % (siehe Abschnitt 7.3.).

Die gegenwärtig zur Verfügung stehenden Apparaturen erlauben es, maximal alle sechs Tage eine Messerie (ca. 15 Messpunkte) durchzuführen. Die Kapazitätsbeschränkung liegt bei der Aktivitätsmessung mit dem Ge-Li-Detektor. Bei der Verwendung mehrerer Detektoren liesse sich der Rhythmus auf eine Messserie pro Tag steigern. Der finanzielle Aufwand für die bestehenden Anlagen beträgt ca. 20'000 Franken (ohne Ge-Li-Detektor).

Abb.2.1. Aufbereitungs-apparaturen

Abb. 2.3. Ausheizapparatur

4. PROBENNAHME IM FELD

Zur Zeit stehen uns 16 tragbare, automatische Probennahmestationen zur Verfügung (siehe B 1). Sie bestehen jeweils aus einem Kasten mit der Strom-versorgung, einer Pumpvorrichtung und einem speziellen Plastiksack (Luftzelt). Die Stationen sind so gebaut, dass sie auch bei Regen eingesetzt werden können.

4.1. Stromversorgung

Die Batterie ist ein besonders leichter 12-V-Bleiakkumulator, dessen Kapazität ausreicht, um die Pumpe zwei Stunden lang mit gleichbleibender Leistung zu betreiben. Mit einer Schaltuhr wird die Pumpe zu vorgewählten Zeiten einund wieder ausgeschaltet.

4.2. Pumpvorrichtung

Zum Ansaugen der Luft wird eine kommerzielle Pumpe für Campingartikel verwendet. Ihre beträchtliche Pumpleistung kann mit einem einstellbaren Vorwiderstand reguliert werden. Für Probennahmezeiten über eine Stunde muss ausserdem ein Teil des Luftstromes mit einer regulierbaren Düse abgezweigt werden. Pumpe und Vorwiderstand sind in einer Plastikglocke untergebracht, die in einer Höhe von ca. 1,90 m an einer eingerammten Stange befestigt wird.

4.3. Luftzelt

Als Luftbehälter dient ein speziell angefertigtes "Luftzelt" aus PVC-Luftfolie. Es hat ein Volumen von 1 m³ und kann mit Heringen am Boden befestigt werden. Der Anschlussstutzen ist verschliessbar und hat ein einfaches Rückschlagventil. Behälter aus Gummi (Wetterballons) haben sich nicht bewährt, da Xenon verloren ging (wahrscheinlich durch Diffusion, siehe A 2.5.). Handelsübliche Polyäthylensäcke sind leider nicht luftdicht.

5. AUFBEREITUNG DER PROBEN

5.1. Aufbereitungsapparatur

Im Labor wird die Luft aus dem Luftzelt durch die Aufbereitungsapparatur gepumpt (siehe Abb. 2.2, 2.4). Dort strömt die Luft zunächst durch ein Glas-U-Rohr, das mit ca. 130 g Molekularsieb (13 X)gefüllt ist. Hier werden Wasserdampf und CO2 adsorbiert, die sonst weiter hinten die Aktivkohlekühlfalle verstopfen könnten. Das U-Rohr steht in einem Wasserbad von Zimmertemperatur, da es sich sonst bei der Adsorption erwärmt. Nach jeder Luftprobe (ca. 1 m³) muss das gebrauchte Molekularsieb durch ausgeheiztes ersetzt werden.

Anschliessend strömt die Probe durch einen regulierbaren Gasflussmesser, mit dessen Hilfe der Durchsatz auf ca. 20 1/min eingestellt wird. Das Durchpumpen einer Probe dauert also ca. 50 min. Vom Flussmesser führt ein Schlauch zur Membranpumpe.

Von hier aus fliesst die Probe unter leichtem Ueberdruck durch eine Kühlschlange aus Kupferrohr, die in einer Mischung aus Alkohol und Trockeneis steht (Temperatur: - 78°C). Hier wird die Luft vorgekühlt.

Abb. 2.4. Schema der Aufbereitungsapparaturen

in Wasserbad

Dann strömt sie schliesslich durch eine Kühlfalle, die mit Aktivkohle gefüllt ist und in derselben Kältemischung steht. Die Kühlfalle ist aus Metall (Höhe 40 cm, Ø ca. 5 cm) und enthält 650 ml gekörnte Aktivkohle. Alles Xenon (100 %, siehe Abschn. 7.2.), ein grosser Teil des Krypton und etwas Argon werden an der Aktivkohle adsorbiert (insgesamt ca. 6.1 Liter).

Der aus der Kühlfalle austretende Rest der Luftprobe wird zunächst durch einen Staubfilter, dann durch eine Gasuhr und schliesslich ins Freie geleitet. Die Gasuhr dient dazu, das Gesamtvolumen der Probe zu messen.

5.2. Ausheizapparatur

Vor der Probenaufbereitung müssen Molekularsieb und Aktivkohle gut ausgeheizt werden. Dafür wurde eine spezielle Ausheizanlage gebaut (siehe Abb. 2.3, 2.5).

Abb. 2.5 Schema der Ausheizapparatur

Die speziell konstruierten Aktivkohle-Kühlfallen (siehe 4.1.), von denen sechs Stück vorhanden sind, werden mit Aktivkohle gefüllt, in die Oefen gestellt und an das Vakuumsystem angeschlossen werden. Anschliessend werden die Oefen auf ca. 400°C aufgeheizt. Ein elektrisches Manometer (LKB) erlaubt es, den Druck während des Ausheizvorgangs zu überwachen. Der Wasserdampf und einige andere Komponenten werden in einer Kühlfalle ausgefroren, die mit flüssigem Stickstoff gekühlt wird. Wenn der Wassergehalt der Aktivkohle sehr hoch ist, wird sie durch eine Metallkühlfalle ersetzt, die mit einer Kältemischung aus Trockeneis und Alkohol gekühlt wird.

Der Ausheizvorgang wird beendet, sobald der Druck bei angeschlossener Pumpe unter 100 µm Hg sinkt. Er dauert, je nach Massergehalt der Aktivkohle, 12 bis 24 Stunden.

Die ausgeheizten Aktivkohlekühlfallen werden verschlossen und langsam abgekühlt. Dann sind sie bereit für die Probenaufbereitung.

Das Molekularsieb wird in genau der gleichen Weise ausgeheizt, was jedoch länger dauert.

Aktivkohle und Molekularsieb können mehrmals wiederverwendet werden.

5.3. Messgefässe, Volumenreduktion

Die zu messende Luftprobe ist nun an 650 ml gekühlter Aktivkohle adsorbiert. Erwärmt man diese auf Zimmertemperatur, so entweichen ca. 6 Liter Gas (STP), das uns interessierende Xenon bleibt jedoch zum grössten Teil (> 70 %) an der Aktivkohle (siehe Anhang C). Ein Messgefäss muss also eine möglichst günstige Anordnung der Aktivkohle um den Detektor herum gewährleisten, der Durchmesser darf nicht allzu gross sein. Andererseits ist die Höhe des Gefässes durch die Abschirmung der Messapparatur begrenzt, so dass das Gefässvolumen für eine optimale Geometrie bei 1 bis 2 Liter liegt.

Wird das Gefäss so ausgelegt, dass es grossen Drücken standhalten kann, so wird ein beachtlicher Teil der schwachen Gammastrahlung durch die notwendigen dicken Wände absorbiert. Eine dauernde Kühlung der Probe wäre sehr mühsam (Transport, lange Messzeiten). Lässt man das beim Auftauen aus der Aktivkohle entweichende Gas ausströmen, so sinkt die Ausbeute auf ca. 70 % und die Reproduzierbarkeit wird schlecht (siehe A 2.6. und C 6.2.).

Experimente haben jedoch gezeigt, dass im kalten Zustand (- 79°C) ein Teil der Gase mit einer Vakuumpumpe abgesaugt werden kann, ohne gleichzeitig messbare Mengen Xenon zu verlieren (Näheres siehe Kapitel 6 und Anhänge A und C).

Die Aktivkohlekühlfalle wird also geöffnet und die kalte Aktivkohle wird in ein ebenfalls gekühltes Messgefäss umgefüllt. Dieses wird schnell verschlossen und weiterhin 1/2 Stunde gekühlt, damit das Xenon möglichst fest gebunden wird. Dann wird das Messgefäss 1/5 sec lang an die Vakuumanlage angeschlossen, um die beim Umfüllen eingedrungene Luft abzusaugen und wie erwähnt das Volumen der Luftprobe zu verringern. Anschliessend wird das Messgefäss auf Zimmertemperatur aufgetaut. Der Druck in ihm liegt dann unter 1,5 atm (siehe Anhang C 2.2.).

Die Messgefässe, von denen 10 Stück vorhanden sind, haben ein Volumen von 1545 ml. Sie sind aus Aluminium hergestellt und für einen Druck von max. 1 atü (= 2 atm) ausgelegt.

6. MESSUNG DER PROBEN

Die Messgefässe werden nach Freiburg gebracht oder geschickt und dort auf dem Germanium-Lithium-Detektor der KUeR (Eidgenössische Kommission zur Ueberwachung der Radioaktivität) gemessen.

6.1. Der Detektor

Der Detektor ist bei Winiger et al. (1974) genau beschrieben. Hier nur einige kurze Angaben: Der Detektor ist senkrecht über dem Kryostat montiert. Die Abschirmung besteht aus einem Zylinder und einem horizontal beweglichen Deckel aus 9 cm dickem Blei. Auf der Innenseite ist sie noch ausgekleidet mit einem Sandwich aus Wolfram, Zinn und Messing, dessen Schichten je 0,2 mm dick sind.

Die Auflösung (=Halbwertsbreite) ist besser als 2 keV bei 81 keV.

Beim Zerfall von natürlichem Radon entstehen Bi-X-Strahlen mit den Energien 75 keV, 77 keV, 87 keV und 90 keV. Diese Energien können also mit diesem Detektor von der Xe-Linie gut unterschieden werden. In Abb. 2.6 ist das Spektrum des Hulleffektes in der Umgebung der Xe-Linie (81 keV) abgebildet. Mit einem Na-I-Detektor liesse sich eine grössere Empfindlichkeit erzielen, jedoch reicht die Auflösung nicht aus, um die Radoneffekte zu eliminieren. Dies wäre sehr unangenehm, da der Rn-222-Gehalt der Luft stark schwankt und Rn zudem eine ähnlich lange Halbwertszeit (3,32 d) wie Xenon (5,27 d) hat.

Da der Peak meist klein und die Statistik schlecht ist, wird bei der KUeR die Auswertung von Hand vorgenommen. Der Peak wird aufgesucht, die Fusspunkte werden mit einer Geraden verbunden und die darüberliegende Fläche (siehe Abb. 2.6., schraffiert) wertet man als Nettosignal (Völkle, 1976). Der Peak ist normalerweise ca. 5 Kanāle breit.

6.2. Die Messgefässe

Die Messgefässe haben eine Höhlung, in die der Detektor hineinragt (siehe B 4). Die Aktivkohle mit dem Xe umgibt den Kristall in einer günstigen Geometrie. Die Wände des Messgefässes in der Höhlung sind aus Aluminium und haben eine Dicke von 1 mm, so dass 5,1 % der Gammastrahlen absorbiert werden.

6.3. Nachweisgrenzen

Nach Currie (1968) sollen die folgenden drei Grenzen unterschieden werden:

- 1) Die kritische Grenze (critical level) L_{C} , mit deren Hilfe sich a posteriori entscheiden lässt, ob man aufgrund eines vorliegenden Messresultates auf das Vorhandensein einer Aktivität schliessen kann oder nicht.
- 2) Die Nachweisgrenze (detection limit) LD, die a priori für ein spezifisches Messverfahren angibt, welche Aktivität noch sicher nachgewiesen werden kann.
- 3) Die Messgrenze (determination limit) LQ, oberhalb deren der Fehler des Resultates unter einer festgelegten Limite liegt (z.B. 10 %).

Die kritische Grenze ist gegeben durch: $L = k_{\alpha} \sigma_{o}$ Dabei ist σ_{o} die Standardabweichung des Nulleffekts.

 k_{α} ist gegeben durch: $\frac{1}{2\pi} \int_{k_{\alpha}}^{\infty} e^{-\frac{u^{2}}{2}} du = \alpha$ wobei α die Irrtumswahrschein-

lichkeit für die Annahme $\mu_s = 0$ (Fehler erster Art) ist. (μ_s ist das wahre Nettosignal).

Die Nachweisgrenze ist gegeben durch:

$$L_{D} = L_{C} + k_{\beta} \sigma_{D}$$

wobei σ_D die Standardabweichung eines Signals von der Intensität L_D bedeutet. k_β ist analog zu k_α durch β gegeben, wobei β die Irrtumswahrscheinlichkeit für die Annahme $\mu_5 \neq 0$ (Fehler zweiter Art) bedeutet.

Die Messgrenze schliesslich wird definiert durch $L_Q = k_Q \sigma_Q$

Dabei ist σ_Q die Standardabweichung des Nettosignals an dieser Messgrenze und $1/k_Q$ ihr geforderter relativer Wert.

Abb. 2.7 Hypothesis testing

Errors of the first and second kinds

(aus Currie , 1968)

In unserem Fall lassen sich einige Vereinfachungen machen:

- 1) Die Impulszahl ist so gross, dass wir eine Normalverteilung annehmen können.
- 2) Es wurden mehrere Blancs gemessen, der Nulleffekt (MB) ist also bekannt.
- 3) Wir wollen fordern: $\alpha = 0.05$; $\beta = 0.05$; $k_Q = 10$ Damit ergibt sich (siehe Currie, 1968):

$$L_C = 1,64 \sqrt{\mu_B}$$
 $L_D = 2,71 + 3,29 \sqrt{\mu_B}$ $L_Q = 50 (1 + \sqrt{1 + \frac{\mu_B}{25}})$

Aus 25 Messungen von Aktivitäten unterhalb der Nachweisgrenze wurde auf die in 6.1. beschriebene Weise der Nulleffekt bestimmt (siehe C 3.1.). Bei einer Messdauer von 40 000 s beträgt er im Mittel $\mu_3/n = 295 \pm 20$ Impulse pro Kanal. Daraus ergibt sich bei einer typischen Peakbreite von fünf Kanälen: kritische Grenze : Lo = 63 Imp = 5 pCi

kritische Grenze : $L_C = 63 \text{ Imp} \approx 5 \text{ pCi}$ Nachweisgrenze : $L_D = 129 \text{ Imp} \approx 10 \text{ pCi}$

Messgrenze : $L_Q = 437 \text{ Imp} \approx 33 \text{ pCi}$

für eine Messdauer von 40 000 s.

Nimmt man an, dass zwischen Probennahme und Messung drei Tage vergehen, ergibt sich für die gesamte Methode eine Nachweisgrenze von 15 pCi/m3.

7. EICHUNG, AUSBEUTE, REPRODUZIERBARKEIT

7.1. Eichung der Messgefässe

Die Zählausbeute der Messgefässe wurde mit derjenigen von Penicillin-Glasfläschchen (Volumen 116,5 ml) verglichen, deren Ausbeute von der KUeR mit einem Xe-Standard aus Saclay geeicht worden war.

Zu diesem Zweck wurde eine spezielle Abfüllanlage für Eichgas gebaut, die es erlaubt, aus einem Vorratsbehälter Eichgas in zwei genau bestimmte, verschliessbare Volumina abzufüllen und gleichzeitig den Druck darin zu messen (siehe Anhang B).

Für die Eichung wurden an dieser Anlage immer ein Glasfläschchen und ein spezielles Eichvolumen gleichzeitig direkt mit Eichgas gefüllt. Das Verhältnis des Gehalts der so gewonnenen Zwillingsproben konnte auf 93 % genau angegeben werden (siehe B 5, C 3).

Der Inhalt des Eichvolumens wurde in ein mit ausgeheizter Aktivkohle gefülltes und evakuiertes Messgefäss gespült. Anschliessend wurde dieses noch eine halbe Stunde lang mit Trockeneis-Kältemischung gekühlt, um eine Bindung des Xenons an die Aktivkohle zu gewährleisten, die mit derjenigen bei einer normal gewonnenen Luftprobe vergleichbar ist.

Auf diese Weise wurden bei zwölf Zwillingsproben die Zählausbeuten verglichen. Setzt man die Ausbeute der Glasfläschchen zu 100 % an, so ergeben sich für die Messgefässausbeuten die Werte: 172,6 %, 159,7 %, 174,0 %, 166,8 %, 164,6 %, 167,2 %, 181,2 %, 171,3 %, 178,8 %, 180,9 %, 175,9 %, 181,2 %, Mittelwert 172,9 % (siehe C 3). Für den relativen statistischen Fehler des Mittelwertes ergibt sich nach der Formel:

 $\frac{\Delta \widetilde{x}}{\widetilde{x}} = \pm \sqrt{\frac{\sum_{m=1}^{n} (\Delta x_m)^2}{n (n-1)}} / \left(\frac{\sum_{n=1}^{n} x_m}{n}\right)$

der Wert 1,2 %. Dazu kommt dann noch der Fehler aus dem Volumenverhältnis (0,3 %). Für die Glasfläschchen hat die KUeR einen Umrechnungsfaktor von 5,24 nCi/cps \pm 5,7 % angegeben. Damit ergibt sich der Umrechnungsfaktor für die Messgefässe zu 3,03 nCi/cps \pm (5,7 \pm 1,2 \pm 0,3)%

3,03 nCi/cps + 7,2 %

7.2. Ausbeute

Zur Bestimmung der Gesamtausbeute wurden acht mal zwei Zwillingsproben gemessen. Bei den ersten beiden Paaren wurde wie bei der Eichung der Messgefässe je eine Eichgasprobe direkt in ein Messgefäss gesaugt. Die andere Probe wurde jeweils in ein Luftzelt geblasen, mit ca. 1 m³ Laborluft gemischt und anschliessend routinemässig aufgearbeitet und gemessen. Bei den weiteren sechs Ausbeutemessungen wurde etwas anders vorgegangen: Die Vergleichsprobe wurde nicht mehr zuerst abgemessen und dann in ein Messgefäss gespült, sondern wie bei den Eichungsmessungen direkt in Glasfläschchen abgefüllt und darin gemessen. Auf diese Weise erhielt ich für die Gesamtausbeute folgende Werte (siehe C 4.1.): 97,3 %, 100,1 %, 98,0 %, 104,0 %, 106,5 %, 99,8 %, 99,2 %, 96,8 %. Der Mittelwert beträgt \overline{x} = 100,2 %, der mittlere Fehler des Mittelwertes $\Delta \overline{x}/\overline{x}$ = 1,2 % und der mittlere Fehler der Einzelmessung $\Delta x_m/\overline{x}$ = 3,4 %. Zusammen mit dem systematischen Fehler aus dem Volumenverhältnis der Eichvolumina (0,3 %, siehe 7.1.) ergibt sich:

Xenon-Ausbeute der Aufbereitung (100 + 1,5) %

Zur Kontrolle wurden ausserdem noch die verschiedenen, möglichen Xenon-Verluste bei der Aufbereitung gemessen:

Bei den letzten sechs Ausbeuteproben wurden zwei Aktivkohlekühlfallen hintereinandergeschaltet um zu prüfen, ob bei normaler Aufbereitung nicht ein Teil des Xenons die Aktivkohle mit dem Luftstrom passieren kann. Die so gewonnenen Proben waren kaum messbar, der Mittelwert der oberen Grenze beträgt 0,35 % der jeweiligen Aktivität der Vergleichsprobe.

Bei der dritten und vierten (L 135, L 136) Aufbereitungsprobe wurde ausserdem die aus dem Messgefäss abgesaugte Luft gemessen. Der Mittelwert der oberen Grenze liegt bei 0.15 % der Vergleichsproben.

Schliesslich wurde bei L 154 und L 156 nach der Aufbereitung das verwendete Molekularsieb gemessen. Auch hier konnte keine Xe-Aktivität nachgewiesen werden, die Nachweisgrenze lag bei 0,1 % der Vergleichsprobenaktivität.

Bei diesen Ausbeutemessungen verblieb die Eichprobe höchstens eine halbe Stunde in einem Luftzelt. Um zu prüfen, ob bei längerer Lagerung Verluste entstehen, wurde zunächst der Luftzelt-Prototyp getestet (siehe C 1.3.):

Nach 9 Tagen Probenlagerung 107 % Ausbeute (L 68)

nach 5 Tagen Probenlagerung 100 % Ausbeute (L 86)

nach 9 Tagen Probenlagerung 96,5 % Ausbeute (L 106)

Es konnten somit keine Verluste festgestellt werden. Beim Test der später angefertigten Luftzelte wurde ein kleines Abfallen der zerfallskorrigierten Probenaktivität festgestellt. Volumenmessungen ergaben jedoch, dass diese Verluste auf Lecks zurückzuführen sind. Das bedeutet, dass lediglich das Probenvolumen abnimmt, die Konzentration jedoch nicht wesentlich verfälscht wird.

7.3. Volumenmessung, Fehler

Bis hierher wurde nur die Messung der Gesamtaktivität betrachtet. Zur Ermittlung der spezifischen Aktivität jedoch muss auch das Volumen der aufgearbeiteten Luftmengen gemessen werden. Der Messfehler der Gasuhr beträgt + 2 %. Num ist aber zu beachten, dass nicht das gesamte Probenvolumen die Gasuhr durchströmt: Eine bestimmte Menge bleibt an der Aktivkohle hängen (ca. 7 Liter, siehe C 2.1.) und der Wasserdampf wird im Molekularsieb aufgefangen. Das Volumen des Wasserdampfes wird aus der Temperatur und der Luftfeuchtigkeit bestimmt (siehe Anhang B). CO₂ wird ebenfalls vom Molekularsieb aufgefangen, ist jedoch vernachlässigbar wenig.

Veranschlagt man die Ungenauigkeit dieser beiden Korrekturen, auf das Gesamtvolumen bezogen, mit + 0,5 %, dann beträgt der Fehler der Volumenbestimmung + 2,5 %. Nach dem Fehlerfortpflanzungsgesetz muss man nun diesen Fehler einfach zum mittleren Fehler der Aktivitätsmessungen (= 3,4 %, siehe 7.2.) addieren und erhält somit:

Reproduzierbarkeit ≈ + 6,5 %

Dies ist der mittlere relative Fehler der Einzelmessungen. Dazu kommt dann noch der Fehler der Eichung (siehe 7.1.):

Fehler der Eichung $\approx \pm 7.2 \%$

III ZUR WAHL EINES AUSBREITUNGSMODELLS FUER DIE UMGEBUNG DES KERNKRAFTWERKES MUEHLEBERG

1. ALLGEMEINES

Mit der zuvor beschriebenen experimentellen Methode lassen sich lediglich die Kurzzeit-Ausbreitungsfaktoren für bestimmte Wetterlagen messen. Was wir jedoch wissen wollen, sind einerseits die Langzeit-Ausbreitungsfaktoren, mit denen die Auswirkungen des Normalbetriebs abgeschätzt werden können, andererseits die Kurzzeit-Ausbreitungsfaktoren für jede beliebige Wettersituation, die für eine Beurteilung von Störfällen unerlässlich sind.

Die direkte experimentelle Bestimmung von Langzeit-Ausbreitungsfaktoren ist bisher nur selten versucht worden (z.B. Ba 71), da hierfür eine Tracerquelle erforderlich ist, die über Jahre kontinuierlich und mit möglichst konstanten Abgaberaten zur Verfügung steht. Ausserdem muss ihre Intensität beträchtlich sein, damit auch im Abstand von einigen km eine kontinuierliche Konzentrationsmessung im Felde mit vertretbarem Aufwand möglich ist. Diese Bedingungen lassen sich ohne beträchtliche Umweltbelastung kaum erfüllen.

Für die Bestimmung der Langzeit-Ausbreitungsfaktoren ist daher ein mathematisch-meteorologisches Modell unerlässlich, dieses liefert meist gleichzeitig auch die Kurzzeit-Ausbreitungsfaktoren für jede beliebige Wetterlage.

Bis heute jedoch existiert kein geschlossenes, zufriedenstellendes Modell für die untere Atmosphäre. Zu viele verschiedene Einflüsse spielen da eine Rolle, sehr starke Vereinfachungen und Einschränkungen sind notwendig, um das Problem angehen zu können. Trotzdem gibt es von verschiedenen Ansätzen her für viele Situationen brauchbare Modelle. Wegen der Vielzahl der Daten, die berücksichtigt werden müssen und die man erhalten will, geschieht die Auswertung dieser Modelle heute fast ausschliesslich mit Computern.

Zumächst wird eine Uebersicht über verschiedene Ausbreitungsmodelle und Rechenmethoden gegeben. In Abschnitt 7 werden dann Berechnungen mit der heute gebräuchlichen Methode angestellt und mit den Ergebnissen der ersten Ausbreitungsexperimente bei Mühleberg verglichen. Diese Arbeit soll lediglich die Wahl eines Rechenmodells vorbereiten. Sie soll Vor- und Nachteile der verschiedenen Methoden, besonders im Hinblick auf Mühleberg oder andere Standorte in topographisch kompliziertem Gelände, abwägen und den Aufwand für die Erstellung eines Modells und die Gewinnung der erforderlichen Ausgangsdaten abschätzen.

2. METEOROLOGISCHE GRUNDLAGEN *

2.1. Luftbewegungen

Die Art und Geschwindigkeit, mit der sich Schadstoffe in der unteren Atmosphäre ausbreiten, hängt im Wesentlichen von den Luftbewegungen ab, insbesondere von kleinen Turbulenzen, die die Schadstoffwolke mit der sie umgebenden Luft vermischen. Diese sogenannte Eddy-(Wirbel-)Diffusion überwiegt bei weitem die bekannte und berechenbare molekulare Diffusion. Deshalb ist eine Untersuchung der Luftbewegungen Grundlage jedes Modells der Schadstoffausbreitung.

Die Erdatmosphäre ist kein homogenes Gebilde, sondern besteht aus mehreren Schichten, die sich in ihrem Verhalten stark voneinander unterscheiden. Sie kann grob in Stratosphäre und Troposphäre eingeteilt werden, zwischen denen wenig Austausch stattfindet. Nur in der Troposphäre spielt sich das eigentliche Wetter ab.

Sämtliche Wettervorgänge beziehen ihre Energie aus der Sonnenstrahlung, sei es durch direkte Erwärmung der Luft, sei es auf dem Umweg über die Erwärmung der Erdoberfläche oder besonders über die Latentwärme verdampften Wassers.

Eine ungeheure Vielfalt von Luftbewegungen erschwert die physikalische Beschreibung der unteren Atmosphäre. Die Ausdehnung dieser Bewegungen reicht von mikroskopischen Grössenordnungen bis zu Tausenden von Kilometern; die Geschwindigkeit von Null bis zu einigen hundert Stundenkilometern. Luftströmungen in der Atmosphäre sind immer turbulent, die laminare Strömungsschicht hat nur eine Dicke von wenigen Millimetern. Die Aufteilung der Bewegung in Hauptströmung (Advektion) und Turbulenz bleibt jedoch immer willkürlich, denn die Uebergänge sind fliessend und fast jede Advektion kann als Turbulenz einer noch grossräumigeren Strömung aufgefasst werden. Statistisch lässt sich die Gesamtheit dieser Bewegungen durch ein Wirbelspektrum beschreiben, das die Intensität der Bewegungen in Abhängigkeit von ihrer Grössenordnung bzw. Frequenz darstellt. Ein solches Spektrum lässt sich z.B. durch eine Frequenzanalyse von Windrichtungsschwankungen gewinnen.

Für das Folgende ist es noch von Bedeutung, zwischen zwei Entstehungsarten von Turbulenzen zu unterscheiden: Turbulenzen können einerseits mechanisch erzeugt werden, das heisst, ein Hindernis erzeugt Wirbel in einem gleichförmigen Strömungsfeld. Thermisch erzeugte Turbulenzen dagegen entstehen durch das ungeordnete Aufsteigen erwärmter Luft. Natürlich sind die meisten Turbulenzen eine Mischform dieser beiden Arten.

2.2. Stabilitätsgrade

Die thermische Schichtung der Atmosphäre ist von entscheidendem Einfluss auf die Turbulenz. Befindet sich die Atmosphäre energetisch im Gleichgewicht, so nimmt die Temperatur mit zunehmender Höhe ab, denn eine aufsteigende Luftmasse dehnt sich wegen des abfallenden Luftdrucks adiabatisch aus (der Wärmeaustausch ist meist wesentlich langsamer als die Bewegungsgeschwindigkeit) und kühlt sich dadurch ab. Dies ist der sogenannte adiabatische Temperaturgradient.

Ist der Temperaturgradient grösser als der adiabatische, so sinkt die Temperatur einer aufsteigenden Luftmasse langsamer als die der Umgebung, sie ist also wärmer und wird durch Auftriebskräfte immer weiter beschleunigt. Umgekehrt

^{*} Dieses Kapitel stützt sich im wesentlichen auf die ausführliche Darstellung bei Slade (1968), sowie auf eine Reihe der im Literaturverzeichnis aufgeführten Arbeiten.

ist eine sinkende Luftmasse bald kälter als die sie umgebende Luft und wird zunehmend nach unten beschleunigt. Eine solche Schichtung wird deshalb labil genannt und verstärkt vorhandene Turbulenzen.

Ist andererseits der Temperaturgradient kleiner als der adiabatische, so wirken die Auftriebskräfte entgegengesetzt zur Bewegungsrichtung und Turbulenzen werden gedämpft. Solche Schichtungen heissen stabil. Schichten, in denen die Temperatur mit zunehmender Höhe steigt, wo der Temperaturgradient also negativ ist, heissen Inversionen.

Abb. 3.1. (aus Slade, 1968)

-Examples of low-level vertical temperature structure. In this figure the choice of surface temperature is arbitrary.

Die thermische Schichtung der untersten Atmosphäre hängt im wesentlichen von der Sonneneinstrahlung und der Bodenbeschaffenheit ab. Deshalb variiert der Temperaturgradient stark mit der Tages- und Jahreszeit. Abb. 3.2 zeigt einen typischen Tagesverlauf der Temperaturschichtung in den untersten 150 Metern. Wegen der Wärmeabstrahlung des Bodens (die grösser als diejenige der Luft ist) herrscht nachts meist eine Inversion, am Tag dagegen ist die Schichtung meist neutral bis labil. Der Uebergang zwischen beiden Situationen beginnt jeweils am Boden und steigt dann langsam auf. Die thermische Schichtung in grösseren Höhen wird dadurch oft kaum beeinflusst. So können z.B. in der Mitte eines Hochs durch das Absinken höherer Luftschichten langandauernde, grossräumige Inversionen bestehen.

Da der Stabilitätsgrad der unteren Atmosphäre die Turbulenz entscheidend beeinflusst, ist seine Bestimmung für die Abschätzung der Diffusion von Schadstoffen von grosser Wichtigkeit. Da die direkte Bestimmung des Temperaturgradienten oft beträchtlichen experimentellen Aufwand erfordert und Schwierigkeiten mit sich bringt, hat man auch versucht, den Stabilitätsgrad mit Hilfe synoptischer Beobachtungen (Windgeschwindigkeit, Sonneneinstrahlung), Bedekkungsgrad) oder direkt durch Messung der Windfluktuation zu bestimmen. Als Mass wird meist ein System von fünf bis sieben Diffusionskategorien verwendet. Näheres darüber siehe Abschnitt 5.2.

The average diurnal variation of the vertical temperature structure at the Oak Ridge National Laboratory during the period September-October, 1950. The data were obtained from captive-balloon temperature soundings. The dashed line in each panel represents the adiabatic lapse rate. (Holland, 1953).

Abb. 3.2. (aus Slade, 1968)

2.3. Das logarithmische Windprofil

Für die unterste Schicht der Atmosphäre, die sogenannte atmosphärische Bodenschicht (surface layer) lassen sich unter bestimmten Voraussetzungen Formeln für die Höhenabhängigkeit der Windgeschwindigkeit ableiten.

Man betrachtet eine gleichförmige, geradlinige, parallele turbulente Strömung und nimmt an, die Scherspannung τ_o sei in dieser Schicht konstant.

Im adiabatischen Fall ist die Turbulenz dann lediglich mechanischen Ursprungs und das Windprofil wird von der Bodenrauhigkeit, die durch die Rauhigkeitslänge zo charakterisiert wird, abhängen. Es ergibt sich

$$\bar{u}(z) = \frac{\sqrt{\tau_o/\ell}}{k} \quad \ln \left(\frac{z}{z_o}\right) \tag{3.1}$$

Dabei ist k eine Konstante, ihr experimentell bestimmter Wert beträgt ca. 0,4.
Um auch nicht-adiabatische Situationen behandeln zu können, muss die zusätzliche Annahme gemacht werden, dass der Wärmefluss im surface layer konstant
ist. Ausserdem braucht man ein Mass für die Stabilität der Schichtung. Monin
und Obukhov führten die Stabilitätslänge L ein:

$$L = \frac{\sqrt{\tau_{\bullet}/g}^3}{kg/T_A} \frac{c_{\bullet} ?}{-H}$$

$$T_A : Lufttemperatur$$

$$\tau_{\bullet} : Scherspannung$$

$$H : Wärmefluss$$
(3.2)

L charakterisiert die Strömung und die Stabilität. Für labile Zustände ist L

negativ, für stabile positiv und für adiabatische Zustände strebt es gegen unendlich.

Auch damit lässt sich jedoch keine eindeutige Formel für das Windprofil ableiten. Für Zustände in der Nähe des adiabatischen Zustandes gilt jedoch folgende Näherungsformel:

$$\bar{u}(z) = \sqrt{\frac{\tau_{c}/g}{k}} \quad (\ln \frac{z}{z_{o}} - \alpha \frac{z}{L}) \quad ; \quad \alpha = \text{const.} \approx 6.0$$
 (3.3)

Für labile bis leicht stabile Zustände stimmt diese Formel mit den experimentellen Ergebnissen gut überein. Sehr stabile Zustände jedoch bleiben eher rätselhaft.

2.4. Der Wind in der planetarischen Grenzschicht

Messungen zeigen, dass Turbulenz und Scherspannung mit zunehmender Höhe jedoch abnehmen. Auch die Windgeschwindigkeit steigt nicht unbegrenzt logarithmisch an. Das im letzten Abschnitt beschriebene Modell gilt also nur für den untersten Teil der planetarischen Grenzschicht.

Ein anderer Ansatz für die Berechnung des mittleren Windes geht von den Bewegungsgleichungen aus. Die durchschnittliche Luftbewegung wird durch drei Beschleunigungskräfte bestimmt: Die Coriolis-Kraft, den Druck-Gradienten und die Reibung. Ab einer bestimmten Höhe ist die Reibung mit der Erdoberfläche vernachlässigbar, die darüberliegenden Strömungen heissen geostrophische Winde.

Wenn man annimmt, dass die Diffusivität in der planetarischen Grenzschicht konstant ist und dass der Druckgradient nicht von der Höhe abhängt, erhält man aus den Bewegungsgleichungen die sogenannte Ekman-Spirale (Abb. 3.3) für die Windrichtungen: In der atmosphärischen Bodenschicht blasen die Winde senkrecht zu den Isobaren, darüber drehen sie langsam gegen rechts (in der nördlichen Halbkugel! in der südlichen nach links) bis sie in die geostrophischen Winde übergehen, die parallel zu den Isobaren verlaufen.

Schematic wind distribution (Ekman's spiral) in the planetary boundary layer, assuming $K_M =$ constant, according to Eqs. 3.41 and 3.42. Wind vectors are plotted from a common origin at increasing heights, z_i , i=1,2, etc.

Abb. 3.3 (aus Slade, 1968)

Abb. 3.4. Aufbau der unteren Atmosphäre (schematisch)

Die Atmosphäre kann man sich also schematisch aus mehreren Schichten aufgebaut denken (Abb. 3.4): Die atmosphärische Bodenschicht reicht bis zu einer Höhe von einigen zehn Metern. Hier sind die Winde parallel und gleichförmig und wachsen logarithmisch mit der Höhe. Darüber, bis zur Grenze der planetarischen Grenzschicht, die bis zu einigen hundert Metern Höhe reicht, nimmt die Turbulenz ab und die Winde drehen langsam. Im oberen Teil der Troposphäre, zwischen der planetarischen Grenzschicht und der Stratosphäre also, zirkulieren die geostrophischen Winde.

In der Realität jedoch sind die gemachten Annahmen kaum alle erfüllt. Die Eddy-Viskosität ist nicht konstant, sondern nimmt mit zunehmender Höhe ab. Auftriebseffekte wurden nicht berücksichtigt, und oft kommen auch beschleunigte Luftbewegungen vor. Obwohl die Realität wesentlich komplizierter ist, stellt dieses Modell eine wertvolle Orientierungshilfe dar.

2.5. Der Einfluss lokaler geographischer Gegebenheiten

Grossräumige Wetterlagen, das Vorüberziehen verschiedener Luftmassen und Wetterfronten sowie die Intensität der Winde haben einen wesentlichen Einfluss auf die Stabilität und das Diffusionsverhalten der unteren Luftschichten.

Daneben jedoch sind auch die lokalen geographischen Gegebenheiten von Bedeutung. So hat die Bodenrauhigkeit, wie schon besprochen, einen wesentlichen Einfluss auf die Turbulenz. Der Bewuchs und die Bebauung des Bodens spielen eine Rolle, erst recht aber, ob der Boden eben, hügelig oder zerklüftet ist. Grössere Hügel und Berge können dabei Winde ablenken oder Wirbel auslösen, die je nach Grössenordnung der betrachteten Vorgänge nicht mehr der Turbulenz sondern eher der Advektion zugerechnet werden müssen.

Weiter ist das thermische und das Strahlungsverhalten der Erdoberfläche von wesentlicher Bedeutung für die lokale Klimatologie. Das Albedo der Oberfläche, also ihre Fähigkeit Strahlung zu reflektieren, spielt bei der Erwärmung des Bodens, und damit auch der unteren Luftschichten, bei Sonneneinstrahlung eine Rolle. Spezifische Wärme und Wärmeleitfähigkeit des Bodens beeinflussen die

Temperatur und die Breite der Temperaturschwankungen. Inhomogeneitäten in der Oberflächenbeschaffenheit können zusätzlich Turbulenzen hervorrufen.

All diese Faktoren beeinflussen also das lokale Diffusionsverhalten der unteren Atmosphäre.

2.6. Diffusion

Die Ausbreitung bzw. Diffusion von Schadstoffen in der unteren Atmosphäre basiert, wie schon erwähnt, im wesentlichen auf turbulenter Diffusion (Eddy-Diffusion); die molekulare Diffusion kann ihr gegenüber vernachlässigt werden. In Anbetracht des meist kontinuierlichen Wirbelspektrums ist die Aufteilung der Luftbewegungen in Turbulenz und Advektion immer problematisch. Sie muss sich nach der Grössenordnung der betrachteten Diffusionsphänomene richten. Abb. 3.5 zeigt, wie sich die Grössenverhältnisse auswirken. Je detaillierter die Kenntnis der Luftbewegungen ist, um so genauer lässt sich das Diffusionsverhalten voraussagen. Die verschiedenen Diffusionstheorien versuchen, dieses Problem von verschiedenen Seiten her anzupacken.

—Idealized dispersion patterns. (a) A large cloud in a uniform field of small eddies. (b) A small cloud in a uniform field of large eddies. (c) A cloud in a field of eddies of the same size as the cloud.

Abb. 3.5 (aus Slade, 1968)

3. DIFFUSIONSTHEORIEN UND AUSBREITUNGSMODELLE

3.1. Zwei gundlegende Ansätze

Uebersichtliche, zusammenfassende Darstellungen zu diesem Thema aus den letzten Jahren sind kaum zu finden. Slade (1968), Vogt (1970), Gutsche et al. (1966) und Vogt (1974) geben hier wohl die wertvollsten Angaben. Besonders die Darstellung bei Slade ist sehr ausführlich, wenn auch teilweise schwer übersichtlich.

Man kann, wie dies Slade und Vogt tun, die Diffusionstheorien zwei grundlegenden Ansätzen zuordnen:

Der Gradienten-Ansatz (Fick'sche Diffusion, K-Theorie) geht aus von einer Verallgemeinerung des Fick'schen Diffusionsgesetzes und berechnet die Ausbreitung von Schadstoffen aus den Konzentrationsgradienten und den Austauschkoeffizienten K. Ausgangspunkt ist hier eine Euler'sche Betrachtungsweise, die von den Grössen ausgeht, die an festen Punkten beobachtet werden können (Wind, Konzentration etc.).

Der statistische Ansatz dagegen, der auf Taylor (1915) zurückgeht, verfolgt die Bewegungsgeschichte einzelner Teilchen und macht statistische Aussagen über diese Bahnen. Diese Theorie geht damit ursprünglich von einer Lagrange'schen Betrachtungsweise aus. Um die Diffusionsparameter aus meteorologischen Messdaten sinnvoll bestimmen zu können, muss jedoch ein Uebergang zur Euler'schen Betrachtungsweise geschaffen werden.

Damit zeigt sich schon hier, dass die beiden Ansätze im Grunde eng miteinander verwandt sind. So führen auch beide, mit den meist verwendeten vereinfachenden Annahmen, zu gaussförmigen Konzentrationsverteilungen.

Man kann die verschiedenen Diffusionstheorien jedoch auch nach anderen Kriterien klassifizieren. So wäre es sinnvoll zu unterscheiden, ob eine homogene Strömung vorausgesetzt wird - wie bei den allermeisten der heute praktisch verwendeten Formeln - oder nicht. Daraus ergibt sich dann, ob eine gaussförmige Verteilung angenommen werden kann. So gibt es sowohl statistische Theorien, die keine Normalverteilung annehmen (z.B. Goldstein, Monin, Davies, Calder, Bosanquet und Pearson), als auch K-Theorien mit anderen Verteilungen (Calder, Lettau etc.).

Mit dieser Fragestellung hängt auch eng zusammen, wieviel meteorologische Information ein Modell verarbeiten kann. So können z.B. die meisten heute verwendeten statistischen Modelle lediglich eine Windgeschwindigkeit und eine Windrichtung (die meist am Emissionsort gemessen werden) verwerten. Wie wir im letzten Kapitel gesehen haben, ist der Mangel an Information über die Luftbewegungen jedoch ein wesentliches Handicap für die Ausbreitungsrechnung. Sind die analytischen Entwicklungsmöglichkeiten eines Modells weitgehend ausgeschöpft, und sind die Parameter in langen Versuchsreihen für die verschiedenen Bedingungen (Bodenrauhigkeit, Stabilität) hinreichend genau bestimmt – und beides scheint mir für die heute verwendeten statistischen Modelle bald zuzutreffen – so lässt sich eine wesentliche Verbesserung der Voraussagen nur durch die Verwendung von mehr meteorologischer Information erreichen. Das gilt vor allem für topographisch kompliziertes Gelände, wo die Luftbewegungen bis heute theoretisch kaum erfassbar sind.

Wichtig ist noch die Unterscheidung zwischen Modellen, die mit analytischen Gleichungen den kontinuierlichen Ausbreitungsvorgang beschreiben, und Modellen, die diesen Vorgang in diskrete Teilschritte zerlegen. Vor allem für die Rechentechnik ist das von Bedeutung. Analytische Formeln lassen sich auch mit einfachen Hilfsmitteln anwenden, bei Teilschritt-Methoden ist das nicht mehr möglich (zur Klärung muss hier noch erwähnt werden, dass das stochastische Einzelschritt-Diffusionsmodell - Taylor (1921), Goldstein (1951), Davies and Diamond (1954), Monin (1955), Obukhov (1959), Lin (1960) - zu parabolischen und hyper-

bolischen Gleichungen führt, die unter Umständen auch analytisch gelöst werden können).

Im Folgenden sollen die vier Typen von Modellen, die in der praktischen Anwendung eine Rolle spielen, kurz beschrieben werden.

3.2. K-Theorie

In Analogie zur Wärmeleitung stellte A. Fick 1855 sein Diffusionsgesetz auf (eindimensional):

$$\frac{\mathrm{d}\chi}{\mathrm{dt}} = K \frac{\partial^2 \chi}{\partial x^2} \tag{3.4}$$

Verallgemeinert man diese Formel auf drei Dimensionen, ohne Isotropie der Ausbreitung vorauszusetzen, so ergibt sich:

$$\frac{d\chi}{dt} = \frac{\partial}{\partial x} (K_x \frac{\partial \chi}{\partial x}) + \frac{\partial}{\partial y} (K_y \frac{\partial \chi}{\partial y}) + \frac{\partial}{\partial z} (K_z \frac{\partial \chi}{\partial z})$$
(3.5)

Dabei sind Kx, Kv und Kz die Austauschkoeffizienten.

Roberts wendete 1923 diese Theorie erstmals auf den Fall einer momentanen Punktquelle an. Die Lösung für diesen Fall lautet:

$$\chi(x,y,z,t) = \frac{Q_0}{(4\pi t)^{3/2} (K_x K_y K_z)^{1/2}} \exp(-\frac{1}{4t} (\frac{x^2}{K_x} + \frac{y^2}{K_y} + \frac{z^2}{K_z}))$$
(3.6)

Das sind die Grundlagen der K-Theorie. Durch Integration können aus (3.6) Lösungen für eine Reihe anderer Quellenkonfigurationen gefunden werden (kontinuierliche Punktquelle, umendliche Linienquelle, Flächenquelle etc.).

Da die Formeln mathematisch einfach zu handhaben sind, wurden die Lösungen der Gleichung (3.5) für die verschiedensten Randbedingungen gut erforscht. Gleichung (3.6) lässt sich je nach den Bedingungen oft stark vereinfachen, so kann man zum Beispiel im stationären Fall die Diffusion in der x-Richtung vernachlässigen.

Die K-Theorie versucht nun, geeignete Ansätze für die Austauschkoeffizienten zu liefern. Da in der atmosphärischen Bodenschicht Windgeschwindigkeit und Temperaturgradient stark höhenabhängig sind, wird auch die Diffusivität nicht konstant sein. Roberts machte einen Potenzansatz für Kz, der bis zu einer Höhe von 100 m brauchbare Ergebnisse liefert. Calder (1949) führte eine höhenabhängige Windgeschwindigkeit ein, deren Profil von der Bodenrauhigkeit abhängt. Deacon (1949) verwendete für Austauschkoeffizienten und Windgeschwindigkeit Potenzansätze, deren Exponenten von der Stabilität der Wetterlage abhängen und aus beobachteten, diabatischen Windprofilen ermittelt wurden. Weitere Fortschritte wurden von Lettau (1952), Davies (1954), Gee and Davies (1963), Saffmann (1962, 1963) erzielt. Die von Berlyand (1972) beschriebene Methode wird in der UdSSR zur Untersuchung der Umwelteffekte von industriellen Schadstoffquellen angewendet (siehe Vogt, 1974). Kontinuierliche Punktquellen, die ums hier besonders interessieren, wurden von Rounds (1955), Smith (1957), Godson (1958) und Davidson und Herbach (1962) eingehend untersucht.

Die Zahl der Publikationen zur K-Theorie ist gross, zum Studium spezieller Probleme wurden teilweise sehr komplizierte Theorien entwickelt. Letztlich basieren sie jedoch alle auf der Annahme, dass die Diffusionsgeschwindigkeit proportional zum Konzentrationsgradienten ist. Die komplizierte Struktur der Turbulenz und vor allem das Vorhandensein von mittelgrossen Wirbeln - die von der Grössenordnung der Schadstoffwolke sind, aber bei der Messung der mittleren Windgeschwindigkeit nicht erfasst werden - lässt erwarten, dass diese Annahme nicht ganz zutrifft. In vielen Fällen jedoch stellt sie eine gute Näherung

dar. Insbesondere für den Nahbereich einer Schadstoffquelle (bis zu einigen humdert Metern) und für die Berechnung der grossräumigen Schadstoffausbreitung in der gesamten Atmosphäre wird die K-Theorie häufig angewendet.

3.3. Box-Modelle

Box-Modelle beruhen ebenfalls auf dem Gradienten-Ansatz. Die Atmosphäre (bzw. das Medium, in dem die Ausbreitung abläuft) wird in Zellen eingeteilt und die Transportgleichung durch ein System von Differenzengleichungen ersetzt, die den Austausch zwischen den Boxen beschreiben. Die Ausbreitung wird nun mit einer grossen Anzahl endlicher Zeitschritte simuliert.

Während diese Methode für hydrologische Systeme, die Untersuchung der Austauschvorgänge in der gesamten Atmosphäre oder kombinierte Systeme breite Anwendung gefunden hat (z.B. Gugelmann 1973, Wiest 1974, Oeschger et al. 1974, Frittelli 19 etc.), wurde sie auf kleinräumige atmosphärische Ausbreitungsprobleme bisher kaum angewendet.

Ein Box-Modell hat gegenüber der üblichen statistischen Methode den wesentlichen Vorteil, dass im Prinzip keine so schwerwiegenden Einschränkungen wie
Homogeneität und zeitliche Konstanz der Strömung, ebenes Gelände usw.

(siehe 3.5.) gemacht werden müssen. Es kann eine Fülle von meteorologischen
Daten verwerten und so den lokalen Gegebenheiten angepasst werden. Trotz einiger erfolgreicher Anwendungen (z.B. MacCracken et al., 1972) treten jedoch in
der Praxis ernste Schwierigkeiten auf, die eine breite Anwendung bis heute verhindert haben. Aufgrund der endlichen Zellengrösse tritt über längere Ausbreitungszeiten eine "Verschmierung" ein, denn die Boxen werden als homogen angenommen. Rumdungsfehler, die charakteristisch für die numerische Lösung von Systemen von Differenzengleichungen sind, führen besonders bei mehreren Quellen
unvermeidlich zu einer sogenannten "künstlichen Diffusion" (Schultz et al.,
1975). Diesen Schwierigkeiten kann zwar manchmal durch eine passende Wahl der
Zellengrössen und Zeitschritte begegnet werden, jedoch immer nur punktuell,
an einem Punkt für eine bestimmte Zeit.

Auch Lagrange'sche Box-Modelle, deren Zellen mit dem Schadstoff wandern, stossen auf die gleichen Schwierigkeiten.

3.4. Die Particle- in-Cell Methode

Diese relativ neue Methode stellt gewissermassen eine Weiterentwicklung der Box-Modelle dar. Um die zuvor beschriebenen Schwierigkeiten zu vermeiden, wurde ein ganz enderes Konzept zu Hilfe genommen: die Trajektorien der Schadstoffe. Die Berechnung von Trajektorien hat schon früher für Ausbreitungsphänomene im globalen Massstab (siehe Wippermann, 1974) und im regionalen Massstab (z.B. Van der Hoven, 1974) erfolgreiche Anwendung gefunden.

Das Particle-in-Cell Modell (PICK) ist num eine hybride Euler-Lagrange'sche Methode, die die Ausbreitung von repräsentativen Tracer-Partikeln in einem Zellensystem mit Hilfe von schrittweisen Trajektorienberechnungen verfolgt. Jeder dieser Schritte setzt sich aus einem Euler'schen und einem Lagrange'schen Teilschritt zusammen: Zuerst wird aus den Positionen der einzelnen Tracer-partikel das Konzentrationsfeld berechnet, daraus kann mit einer Art Box-Modell die Diffusionsgeschwindigkeit bestimmt werden. Zusammen mit dem Windfeld ergibt sich daraus das Feld der Transportgeschwindigkeit. Im zweiten Teilschritt werden dann die Tracerpartikel mit Hilfe dieses Geschwindigkeitsfeldes fortbewegt.

Diese Methode wurde in den letzten Jahren in den USA entwickelt (Sklarew et al. 1971, Lange 1973, Lange and Knox 1974), neuerdings beschäftigt sich damit auch eine Gruppe in Deutschland (Schultz 1975, Wüneke 1975, 1976).

Der Aufwand ist grösser als bei der statistischen Methode, jedoch scheint sie wesentlich flexibler zu sein und bessere Ergebnisse zu liefern. PICK kann eine Fülle von meteorologischen Daten verwerten. Um diese Möglichkeit auszunutzen, muss allerdings auch ein entsprechender experimenteller Aufwand getrieben werden. Jedoch kann ein entsprechendes PICK-Programm auch mit denselben minimalen Daten wie ein statistisches Modell laufen und liefert dann, allerdings nach längerer Rechenzeit, praktisch dasselbe Ergebnis. Bis heute jedoch wurde diese Methode noch kaum angewendet.

Im Kapitel 6 soll näher auf dieses erfolgversprechende Modell eingegangen werden.

3.5. Das statistische Diffusionsmodell

Wie schon mehrfach erwähnt, wird zur Untersuchung der atmosphärischen Ausbreitung von Schadstoffen im Bereich bis zu 20 km dieses Modell heute weitaus am häufigsten verwendet.

Die statistische Diffusionstheorie geht aus von der kontinuierlichen Bewegung einzelner Teilchen, die sich mit Hilfe einer Autokorrelationsfunktion R (ξ) beschreiben lässt. Es ergibt sich eine gaussförmige Konzentrationsverteilung in der Schadstoffwolke, die sich für den Fall einer momentanen Punktquelle mit der folgenden Gleichung darstellen lässt:

$$\chi(x,y,z,t) = \frac{Q}{(2\pi)^{3/2}\sigma_{x}\sigma_{y}\sigma_{z}} \exp\left(-\frac{(x-ut)^{2}}{2\sigma_{x}^{2}} - \frac{y^{2}}{2\sigma_{y}^{2}} - \frac{z^{2}}{2\sigma_{z}^{2}}\right)$$
(3.7)

Das entspricht genau der Fick'schen Diffusionsgleichung (3.6), wenn $\sigma_i^2 = 2 \text{ Kit}$ gesetzt wird. Für den Fall einer kontinuierlichen Punktquelle in der Höhe H, stationäre Bedingungen und vollständige Reflektion am Boden ergibt sich:

$$\chi(x,y,z) = \frac{Q}{2\pi \sigma_{y} \sigma_{z} u} \exp(-\frac{y^{2}}{2 \sigma_{y}^{2}}) \left[\exp(-\frac{(z-H)^{2}}{2 \sigma_{z}^{2}}) + \exp(-\frac{(z+H)^{2}}{2 \sigma_{z}^{2}}) \right]$$
(3.8)

Diese Formel wird den meisten Rechenprogrammen zugrundegelegt. Die Diffusionsparameter σ_y , σ_z hängen von der Turbulenz ab und wurden für die verschiedenen Wetterkategorien und Geländearten experimentell bestimmt (Näheres siehe Abschnitte 5.1. und 5.2.).

Die statistische Methode benötigt damit lediglich meteorologische Daten, die am Emissionsort einfach gemessen werden können. Die mathematische Handhabung der Formeln ist sehr einfach. Der geringe Aufwand, der für diese Berechnungsmethode erforderlich ist, hat wohl entscheidend zu ihrem Erfolg beigetragen.

Für die statistische Diffusionstheorie müssen jedoch Voraussetzungen angenommen werden, die ihre Anwendbarkeit beträchtlich einschränken (Wippermann 1974):

- Stationarität der meteorlogischen Parameter u, ox, ov, oz
- Horizontale Homogenität dieser Parameter
- Völlig ebener Erdboden
- Höhenkonstanz der meteorologischen Parameter (es werden Mittelwerte verwendet !)
- Die Diffusionsgeschwindigkeit in der Windrichtung muss gegenüber \overline{u} vernachlässigbar klein sein $(\Rightarrow \sigma_x = 0)$

Die statistische und die PICK-Methode scheinen mir heute die einzigen zu sein, die für eine Simulation der atmosphärischen Schadstoffausbreitung im Nahbereich in Frage kommen. Nach einer kurzen Darstellung der speziellen Probleme in der Umgebung des Kernkraftwerkes Mühleberg sollen diese beiden Modelle deshalb eingehender betrachtet werden.

4. ANFORDERUNGEN AN EIN AUSBREITUNGSMODELL FUER DIE

UMGEBUNG DES KERNKRAFTWERKS MUEHLEBERG

Die Umgebung des Kernkraftwerks Mühleberg (KKM) zeichnet sich zunächst durch eine komplizierte Topographie aus (siehe Abb. 3.6). Das Kraftwerk liegt in einem engen, S-förmigen Teil des Aaretales zwischen dem Wohlensee und dem Zusammenfluss mit der Saane. Die Talhänge steigen beiderseits steil bis auf 100 m über der Talsohle an, das umliegende Gebiet ist durch eine ungeordnete Hügelstruktur gekennzeichnet. Die Windungen, Verbreiterungen und Verzweigungen des Aaretals machen schematische Vereinfachungen für ein übersichtliches Geländemodell unmöglich.

Die Hauptwindrichtungen in der Höhe (N-O und SW-W) liegen ungefähr parallel zur Längsachse des gewundenen Tales. Auf der Talsohle jedoch sind beträchtliche Abweichungen von dieser Windrose festzustellen (Institut Suisse de Météorologie, Centrale Nucléaire de Mühleberg, Rapport final, 1967). Die komplizierte Celändestruktur muss zu erheblichen Umleitungen des Windes und zur Bildung grösserer Wirbel führen. Der meteorologische Bericht macht über die Winde in der näheren Umgebung kaum weitere Angaben. Es wurde jedoch festgestellt, dass der Wind durch das gesamte Aaretal zwischen der Rewag und Bern stark kanalisiert wird. Seither wird der Wind nur am Abluftkamin des Kraftwerks gemessen. Erste Messungen mit der Xe-Methode weisen jedoch darauf hin, dass die Ausbreitungsverhältnisse sehr kompliziert sind.

Das Verhalten der thermischen Schichtung der lokalen unteren Atmosphäre und der Einfluss der Topographie und des Wohlensees auf diese Schichtung sind infolge einer ungünstigen Anordnung der Messpunkte nur sehr ungenau bestimmt worden (ISM 1967).

Bei der Berechnung der langzeitigen Umgebungsbelastung durch den Normalbetrieb des Reaktors ist wegen der geringen Abgaberate nur die nähere Umgebung von Interesse. In diesem Bereich spielen die oben angegebenen lokalen Einflüsse eine ganz wesentliche Rolle. Die Fehler, die sich bei der Anwendung eines Flachland-Modells ergeben, sind beträchtlich (siehe dazu Kapitel 7).

Für die Beurteilung von Störfällen, bei denen grössere Aktivitätsmengen freigesetzt werden, ist auch eine Betrachtung mittlerer Distanzen notwendig. Die Agglomeration Bern ist 10 bis 15 km vom Reaktor entfernt und nordöstliche Winde sind relativ häufig. In diesem Falle spielen die lokalen Gegebenheiten eine kleinere Rolle, sie können aber trotzdem nicht vernachlässigt werden: Einerseits wird die besonders komplizierte Topographie in der unmittelbaren Umgebung des Kernkraftwerkes zu einer relativ starken anfänglichen Durchmischung führen. Andererseits werden die Schadstoffe möglicherweise durch das Aaretal nach Bern hin kanalisiert.

Da die vorhandenen meteorologischen Messeinrichtungen äusserst rudimentär sind und, zumindest bis heute, nur knappe Geldmittel zur Verfügung stehen, sollte ein brauchbares Modell mit einem Minimum an meteorologischen Daten auskommen oder so flexibel sein, dass es nachträglich mit zusätzlichen Daten verfeinert werden kann. Insbesondere stellt sich die Frage, welche meteorologischen Messungen gleichzeitig mit den Ausbreitungsexperimenten (Xe-Methode) angestellt werden müssen, damit die gewonnenen Werte für die Entwicklung und Verfeinerung des Modells verwendet werden können.

Besonders im Hinblick auf die hier skizzierten lokalen Gegebenheiten und auf den erforderlichen Aufwand sollen die statistische und die PICK-Methode im Folgenden näher untersucht werden.

5. STATISTISCHE AUSBREITUNGSMODELLE

5.1. Theoretische Grundlagen

Um Ausbreitungsphänomene in der unteren Atmosphäre mit statistischen Methoden untersuchen zu können, machte Taylor (1920) die Annahme, dass eine stationäre, homogene, turbulente Strömung vorliege. Diese Voraussetzung ist in der atmosphärischen Bodenschicht sicher nicht erfüllt, stellt jedoch eine Vereinfachung dar, die wesentliche Fortschritte ermöglicht hat. So erhielt Taylor sein grundlegendes Theorem:

$$\overline{y^2}(t) = 2 \overline{v^2} \int_0^t \int_0^{t_1} R(\xi) d\xi dt_1$$
(3.9)

Hierbei ist y^2 (t) das mittlere Abstandsquadrat eines Partikels vom Ausgangspunkt, bzw. der Mittellinie der Schadstofffahne. v^{12} ist das mittlere Geschwindigkeitsquadrat der Windfluktuationen und R(ξ) die bereits in 3.5. erwähnte Autokorrelationsfunktion, die durch

$$R(\xi) = \frac{\overline{v'(t)} \ v'(t+\xi)}{\overline{v'^2}}$$
 (3.10)

gegeben ist. Damit lässt sich $R(\xi)$ jedoch nicht berechnen. Es können aber zwei Grenzfälle angegeben werden:

für kleine t
$$\overline{y^2}(t) \approx \overline{v'^2} t$$

für grosse t $\overline{y^2}(t) \approx 2 K t$

Der erste Fall wurde z.B. von Frenkiel (1953) für kurze Distanzen verwendet, der zweite entwpricht der K-Theorie und wurde u.a. von Machta (1958) für globale Dimensionen angewandt. Bis zu welchen Grenzen diese Näherungen gültig sind, ist jedoch schwer zu sagen. Batchelor (1949) hat diese Gleichungen für drei Dimensionen verallgemeinert.

Sutton (1953) nahm nun an, $R(\xi)$ könne nur von der Intensität der Turbulenz v^{12} , der Viskosität ν und ξ abhängen und gab eine Interpolationsformel an:

$$R(\xi) = \left(\frac{y}{y + y!} \xi\right)^n \qquad (0 < n < 1)$$

daraus folgt:

$$\overline{y^2}$$
 (t) = $\frac{1}{2}$ C_v (ut) $^{2-n}$

mit

$$c_y^2 = \frac{4y^n}{(1-n)(2-n)u^n} \left(\frac{\overline{v'^2}}{\bar{u}^2}\right)^{1-n}$$

Die Bestimmung von \mathbf{C} ist aus diesen Formeln jedoch nur schwer und ungenau möglich.

Hay und Pasquill (1959) schliesslich postulierten, dass die bis anhin verwendete Lagrangesche Korrelationsfunktion $R(\xi)$ durch eine Eulersche Korrelationsfunktion ersetzt werden kann. Durch Betrachtung der Fouriertransformation von $R(\xi)$ gelangten sie zum Schluss, dass Taylors Theorem auch in der Form

$$\overline{y^2}(t) = \overline{(v^{12})}_{t} t^2$$
 (3.11)

geschrieben werden kann. Dabei bedeutet (), dass die Einzelwerte v' vor der Berechnung der Varianz über die elementaren Zeitintervalle t gemittelt werden müssen (laufendes Mittel). (3.11) ist nun noch in der Lagrangeschen Betrachtungsweise geschrieben. Nach dem Hay-Pasquillschen Prinzip ist nun die Euler-

sche Turbulenzintensität ungefähr gleich gross wie die Lagrangesche, und die Zeitskalen transformieren sich linear. Damit wird in Eulerscher Schreibweise:

$$\overline{y^2}(t) = \overline{(v_E^{12})}_{t/2} t^2$$
 (3.12)

Der Wert von β (Verhältnis zwischen der Lagrangeschen und der Eulerschen Zeitskala) wird mit 4 angegeben, ist jedoch nur ungenau bestimmt. Für die nun Eulersche Transportzeit t kann noch t=x/u gesetzt werden. Daraus lässt sich die Mittelungszeit t/β genau bestimmen. (Siehe Slade 1968 und Vogt 1974).

Dies sind nun Formeln für die mittleren Abstandsquadrate. Die Art der Verteilung ist damit noch nicht festgelegt. Die K-Theorie, die für grosse t den Grenzfall der Taylorschen Theorie darstellt, führt zu einer Normalverteilung. Andererseits lässt auch der zufällige Charakter der Turbulenz auf eine gaussförmige Verteilung schliessen. Schliesslich weisen auch fast alle Diffusionsexperimente auf eine solche Verteilung hin. Die meisten Autoren gehen daher von dieser Voraussetzung aus. Es gibt jedoch einige Ausnahmen (siehe Abschnitt 3.1.). Damit ergeben sich für die Konzentrationsverteilung die Gleichungen (3.7) und (3.8). Die $\overline{y^2}(t)$ aus den Gleichungen (3.9) bis (3.11) können nun mit den σ_y^2 gleichgesetzt werden (Entsprechendes gilt für $\overline{z^2}(t)$ und σ_z^2). Damit ergibt sich:

$$\sigma_y^2 = c^2 \quad x^{2-n}$$

$$\sigma_z^2 = c^2 \quad x^{2-n}$$
Sutton (3.13)

und

$$\mathcal{O}_{\delta} = x \left(\mathcal{O}_{\Theta} \right)_{T, x/\beta \bar{u}}$$
Pasquill
$$\mathcal{O}_{\epsilon} = x \left(\mathcal{O}_{\Phi} \right)_{T, x/\beta \bar{u}}$$
(3.14)

In (3.14) ist T die gesamte Messdauer und $x/\beta\bar{u}$ das elementare Zeitintervall, über das die Windmessung jeweils gemittelt wird.

Die Formeln von Sutton waren bis vor einigen Jahren weit verbreitet, werden aber heute kaum noch verwendet (Vogt 1974, eine Ausnahme macht ISM 1976). Die Koeffizienten C und n können nur ungenau berechnet werden und sind unanschaulich.

5.2. Diffusionsparameter und Diffusionskategorien

Die Standardabweichungen der Windfluktuationen können mit Vektorwindfahnen gemessen werden. Um die Messungen auszuwerten, verwendet man sogenannte Sigmameter. Sie bestehen aus elektronischen Filtern, mit denen sich die Mittelungszeiten T und $x/\beta\bar{u}$ regulieren lassen (Siehe Vogt 1974 , Slade 1968). Fluktuationsmessungen wurden zuerst von Meade und Pasquill zur Erstellung ihres Diffusionsparametersystems verwendet. Einvollständiges Parametersystem bis zu einer Distanz von 10 km wurde mithilfe von Fluktuationsmessungen in Mol (Belgien) entwickelt (siehe Vogt 1974).

Der bestechenden Einfachheit dieser Methode steht leider entgegen, dass die Gültigkeit des Hay-Pasquillschen Prinzips nicht ganz gesichert ist und der Wert von β nicht genau angegeben werden kann (Vogt 1974). Ausserdem ist nicht geklärt, ob der Einfluss der Bodenrauhigkeit bei diesen Messungen richtig erfasst wird (Vogt und Geiss 1974). Vor allem jedoch ist die experimentelle Durchführung dieser Fluktuationsmessungen mit laufenden Mitteln bis heute offenbar relativ aufwendig (Vogt et al. 1973).

Wegen dieser Schwierigkeiten versucht man nun die Ausbreitungsparameter und ihr räumliches Verhalten für verschiedene atmosphärische Bedingungen experimentell zu bestimmen. Es wurde bis heute eine grosse Anzahl solcher Ausbreitungsexperimente durchgeführt (siehe Slade 1968, Kapitel 4 oder Vogt 1974). Wegen der Vielfalt der Bedingungen ist das Datenmaterial jedoch immer noch ungenügend.

Da die Diffusion von der Turbulenz in den unteren Luftschichten abhängt, muss zunächst das Turbulenzverhalten beschrieben werden können. Die ursprünglich von Sutton (1953) vorgeschlagene Charakterisierung allein durch den Temperaturgradienten eignet sich nicht, da Turbulenz auch mechanisch und nicht nur thermisch bedingt sein kann. Von verschiedenen Autoren wurden Systeme von <u>Diffusionskategorien</u> vorgeschlagen; die wichtigsten sollen im Folgenden kurz dargestellt werden.

Das in Brookhaven entwickelte System (Singer und Smith 1966) geht aus von den azimutalen Windrichtungsschwankungen und unterscheidet fünf Kategorien. Diese Aufspaltung hat sich als zu wenig differenziert erwiesen, liefert für die labilen und neutralen Kategorien jedoch gute Ergebnisse.

Das von Pasquill (1961) vorgeschlagene "praktische" System hat weitaus die grösste Verbreitung erfahren (siehe zum Beispiel die ausgezeichnete Darstellung in IAEA 1968). Ein zweidimensionales Bestimmungssystem, das Windgeschwindigkeit und Ein- und Ausstrahlung (aus Tageszeit und Bedeckungsgrad) berücksichtigt. Die erforderlichen Windmessungen und synoptischen Beobachtungen können mit einfachsten Hilfsmitteln durchgeführt werden. Es werden sechs Ausbreitungskategorien unterschieden. Dieses System wurde von Turner (1964, Berücksichtigung der Wolkenhöhe) und von Uhlig (1965, Berücksichtigung von Lufttrübung und Bodenzustand) weiterentwickelt. Reuter (1970) hat eine programmierte Bestimmungsvorschrift angegeben.

In Mol (Belgien) wurde ein System entwickelt, das den Temperaturgradienten und die Windgeschwindigkeit berücksichtigt (Bultynck, Malet).

In Jülich (BRD) werden zur Bestimmung der Diffusionskategorie drei Verfahren gleichzeitig angewendet, deren Kategorieeinteilung sich an Pasquill anlehnt. Beim ersten Verfahren wird die Windgeschwindigkeit, sowie ein Strahlungsindex (berechnet aus Sonnenhöhe und Bedeckungsgrad) berücksichtigt, beim zweiten tritt an die Stelle des Strahlungsindexes eine gemessene Strahlungsbilanz, beim dritten Verfahren schliesslich geht ausser der Windgeschwindigkeit noch der Temperaturgradient ein. Es konnte weitgehende Uebereinstimmung festgestellt werden (vor allem für lange Mittelungszeiten), jedoch scheint sich das dritte Verfahren am besten zu bewähren. Ausserdem ist man in Jülich daran, ein Bestimmungsverfahren aus den Windfluktuationen zu entwickeln. (Vogt 1970, Vogt et al. 1973, 1974).

Die hier beschriebenen Systeme von Diffusionskategorien sind, bis auf diejenigen mit Turbulenzmessung, von der Bodenrauhigkeit unabhängig. Die so klassifizierten Diffusionsparameter sind daher nicht auf Gegenden verschiedener Bodenrauhigkeit übertragbar.

Aufgrund von Messungen an verschiedenen Orten wurden mehrere Systeme von Diffusionsparametern und Diffusionskategorien entwickelt (Pasquill 1961, Meade 1959, Gifford 1960, Klug 1969, Singer und Smith (Brookhaven) 1966, McElroy (St. Louis) 1969, Vogt et al (Jülich) 1973). Für die Abhängigkeit der Parameter vom Quellenabstand wurden dabei verschiedene Ansätze verwendet. In Jülich (BRD) zum Beispiel, wo seit Jahren Ausbreitungsexperimente mit einem grossen Messnetz durchgeführt werden, wertet man die Experimente vor allem mit einem Potenzansatz ($\sigma_i = p_i X^{q_i}$) aus. Die Koeffizienten p_i und q_i hängen von der Diffusionskategorie ab (Vogt et al. 1973). Die verschiedenen Systeme sind schwer zu vergleichen, weil Messdauer und Emissionshöhe sehr unterschiedlich waren. Abb. zeigtden Kurzzeitausbreitungsfaktor $\hat{\chi} = \chi/Q$ für diese Systeme in Abhängigkeit vom Quellabstand. Die grossen Abweichungen sind weniger auf die unterschiedlichen Messdauern und Emissionshöhen zurückzuführen, als

Abb. 3.7 (aus Vogt, 1974)

Short-time diffusion factors, release height of 100 m, based on different systems of diffusion parameters (neutral diffusion category, wind velocity 1 m/s).

auf Unterschiede in der Bodenrauhigkeit (Vogt 1974). So betrug die Rauhigkeitslänge bei Meade, Klug und Pasquill ca 1 cm, in Jülich dagegen ca 1 m. Auch bei Messungen in Karlsruhe ergab sich eine starke Verkleinerung der Quelldistanz des Konzentrationsmaximums gegenüber den Pasquillschen Werten (König et al. 1974).

Es hat sich gezeigt, dass die Unterteilung in 6 bis 8 Diffusionskategorien vor allem in labilen Bereich sehr grob ist, und sich die Wertebereiche der Diffusionsparameter der verschiedenen Kategorien überlappen. Man versucht daher einen brauchbaren, kontinuierlichen Stabilitätsparameter zu finden. (Vogt et al. 1973).

5.3. Bestimmung von Langzeitausbreitungsfaktoren

Sind die Diffusionsparameter $\sigma_{\mathbf{y}}$ und $\sigma_{\mathbf{z}}$, und damit die Kurzzeitausbreitungsfaktoren für die verschiedenen Diffusionskategorien bekannt, so können mithilfe einer mehrjährigen dreidimensionalen Wetterstatistik die Langzeitausbreitungsfaktoren berechnet werden. Teilt man die Windrichtungen und die Windgeschwindigkeiten in Klassen ein, so lässt sich aus der Wetterstatistik eine dreidimensionale Häufigkeitsverteilung p (Windrichtungen i, Diffusionskategorien j und Windgeschwindigkeiten k) konstruieren. Dann lassen sich die Langzeitausbreitungsfaktoren für die verschiedenen Windrichtungen wie folgt berechnen (Vogt und Geiss 1974):

$$\hat{\chi}_{i}(x) = \sum_{j,k} p_{ijk} \frac{12}{\sqrt{2\pi^{3}} \times \sigma_{zj} \bar{u}_{jk}} \exp(-\frac{H^{2}}{2\sigma_{zj}^{2}})$$
 (3.15)

Die Ungenauigkeit der heutigen Systeme von Diffusionskategorien kann zu grossen Fehlern bei den Langzeitausbreitungsfaktoren führen. Da jede Kategorie noch ein breites Spektrum von Diffusionsparametern umfasst, ist eine grosse Anzahl von Ausbreitungsexperimenten erforderlich, um einigermassen repräsentative Mittelwerte zu erhalten.

Erwähnenswert ist noch, dass der Einfluss der Bodenrauhigkeit bei den Langzeitausbreitungsfaktoren grösser ist als bei den Kurzzeitwerten. So fallen die Maxima der Jülicher Langzeitausbreitungsfaktoren (also für rauhes Gelände) ungefähr um einen Faktor 5 grösser aus, als die Maxima nach Pasquill (Vogt und Geiss 1974).

Die einzigen Direktmessungen von Lanzeitausbreitungsfaktoren wurden meines Wissens in England von Meade und Pasquill (Slade 1968, Kapitel 4) und in Chalk River, Canada (Barry 1971) durchgeführt. Die Messungen von Meade und Pasquill zeigten eine annehmbare Uebereinstimmung mit den berechneten Werten. Barry werteteseine Messungen mit Hilfe von Häufigkeitsverteilungen der Konzentrationswerte aus. In Brookhaven wurde über Jahre die Gammadosis in der Umgebung eines Ar-41 emittierenden Versuchsreaktors gemessen. Die Auswertung für das Jahr 1963 ergab eine annehmbare Uebereinstimmung zwischen den gemessenen und den berechneten (Verfahren ähnlich wie in Jülich) Werten (May and Stuart 1968).

5.4. Berücksichtigung des Windprofils

In den üblichen Formeln für die Schadstoffkonzentration wird eine mittlere Windgeschwindigkeit u verwendet. Meist setzt man hier die in Emissionshöhe gemessene Windgeschwindigkeit ein (dabei ist zu bemerken, dass die effektive Emissionshöhe infolge der Kaminüberhöhung, die meist auch berücksichtigt wird, noch im einiges höher liegt). Wie wir jedoch wissen steigt in der
atmosphärischen Bodenschicht die Windgeschwindigkeit mit der Höhe. In Jülich
(Vogt et al. 1974) liess sich die Transportgeschwindigkeit am besten durch
den vertikalen Mittelwert der Windgeschwindigkeit zwischen dem Boden und der
effektiven Emissionshöhe annähern. Das Windprofil kann mit einem log- bzw.
mit einem log+lin - Gesetz (siehe Abschnitt 2.3) oder auch mit empirisch anzupassenden Potenzansätzen beschrieben werden. Die Rauhigkeitslänge z
0 ist
schwer zu bestimmen, da sie stabilitätsabhängig ist.

In Jülich ist man daran, ein statistisches Ausbreitungsmodell zu entwickeln, das die höhenabhängige Windgeschwindigkeit berücksichtigt (Vogt et al 1974/1). Dabei wird die anfängliche Gaussverteilung aus abzählbar vielen infinitesimalen Gaussverteilungen aufgebaut, deren räumliche Anordnung wieder gaussförmig verteilt ist. Die resultierende Verteilung nach einem Transport mit höhenabhängiger Windgeschwindigkeit ist keine Gaussverteilung mehr.

5.5. Einfluss von Windrichtungsänderungen

Auch in dieser Hinsicht zeigt sich, dass die Annahme einer homogenen, stationären Strömung eine grobe Vereinfachung der Realität darstellt. Die üblichen Formeln der statistischen Ausbreitungstheorie gelten nur für zeitlich konstante Diffusionsbedingungen mit "statistischen" Schwankungen. In der Realität jedoch sind Aenderungen der Windrichtung sehr häufig. Die Durchführung von Ausbreitungsexperimenten wird dadurch oft "gestört".

Schwankt die Windrichtung gleichmässig innerhalb eines bestimmten Sektors, so kann man für längere Messzeiten über y intergrieren (siehe zum Beispiel ISM 1976). Es kann auch wiederum eine gaussförmige Verteilung der Schwankungen angenommen werden (Slade 1968, S.99).

Für die Berechnung der Langzeitausbreitungsfunktion nehmen Gaglione et al. (1969) an, dass die azimutale Konzentrationsverteilung der Verteilung der Windrichtungen (Windrose) entspricht. Dies tun auch die Rechenprogramme HERMES und AIREM (siehe Abschnitt 5.8.)

Das Problem hängt, wie man sieht, eng mit der Messdauer zusammen, denn von ihr hängt es ab, ob die Schwankungen als statistisch verteilt betrachtet werden können. Mit wachsender Messdauer wachsen deshalb natürlich auch die σ , denn Turbulenzen niedrigerer Frequenzen werden dann zunehmend mit berücksichtigt (siehe auch Brun et al. 1974). Da das statistische Ausbreitungsmo-

dell auf einer künstlichen Aufteilung in Hauptströmung und statistische Schwankungen beruht, müssen Turbulenzen, deren Periode in der Grössenordnung der Messdauer liegt, immer zu Schwierigkeiten führen.

Um ein Bild der Schadstofffahne für kürzere Beobachtungszeiten, bzw. grössere Quelldistanzen und damit Transportzeiten zu erhalten, wurden Modelle entwickelt, bei denen die Fahne aus einzelnen gaussförmigen Wolken zusammengesetzt ist, die schrittweise mit dem jeweiligen Wind transportiert werden. Der Aufwand für solche Modelle und die Schwierigkeiten sind jedoch beträchtlich (siehe Schultz et al. 1975).

5.6. Schwachwindlagen und Inversionen

Diese austauscharmen Wetterlagen können in der Umgebung eines Emittenten zu beträchtlichen Schadstoffkonzentrationen führen. Für die Langzeitbelastung mögen solche ungünstigen Bedingungen wohl an den meisten Orten von untergeordneter Bedeutung sein (siehe Barry 1971), im Falle von Störfällen jedoch sind sie sehr ernstzunehmen. Langandauernde austauscharme Wetterlagen kommen in unseren Gegenden relativ selten vor. Tageszeitlich bedingte Schwachwindlagen oder Inversionen sind dagegen häufig.

Die Erfassung dieser Situationen ist sehr schwierig. Da meist die erforderlichen meteorologischen Messdaten fehlen, ist auch die Entwicklung entsprechender Modelle noch nicht weit gediehen. Die meist verwendeten Windmessinstrumente sprechen bei schwachen Winden Kaum an, vor allem die Richtungsangabe ist oft fehlerhaft. Inversionen, die über der Emissionshöhe liegen, können, wenn kein meteorologischer Turm zur Verfügung steht, im Grunde nur mit Hilfe von Radiosondenaufstiegen (an Fesselballonen) gemessen werden., die kostspielig sind, jedoch von grossen Wetterstationen routinemässig durchgeführt werden. Oft lässt sich aus diesen Messergebnissen der umliegenden Wetterstationen die Höhe der Inversion ungefähr interpolieren.

Die Bedingungen in Mühleberg sind nur sehr unvollständig bekannt. Der meteorologische Sicherheitsbericht (ISM 1967) liefert für die Inversionslagen nur sehr ungenaue Daten. Er unterscheidet drei Schichten zwischen 0 und 280 m über dem Standort. Für vier repräsentative Monate des Berichtsjahres wird mit Hilfe von lediglich drei Diffusionskategorien eine Statistik der Ausbreitungsbedingungen angegeben. Trotz der Unsicherheit der angegebenen Werte (siehe auch Abschnitt 4) wird festgestellt, dass die Käufigkeit der Inversionslagen nicht zu vernachlässigen ist. Die Zahl der Schwachwindlagen ist beachtlich: in der Höhe von 30 m lag im Untersuchungsjahr 66/67 die Windgeschwindigkeit in 47% der Zeit unter 1 m/s . In einer Höhe von 160 m betrug der Anteil dieser Winde immer noch 12%. Es muss damit gerechnet werden, dass sich die Schadstoffe im austauscharmen Talkessel fangen können. Dazu muss jedoch bemerkt werden (siehe May und Stuart 1968) dass gerade bei Schwachwindlagen die Kaminüberhöhung grosse Werte erreicht.

Das statistische Diffusionsmodell nimmt homogene Bedingungen und meist eine nach oben unbegrenzte Ausbreitung an. Höheninversionen können grob durch einen Reflexionsterm simuliert werden (siehe z.B. ISM 1976). Für eine detaillierte Betrachtung komplizierter Temperaturschichtungen wären Mehrschichtenmodelle notwendig

Auf längere Distanzen führt eine Höheninversion zu einer homogenen vertikalen Konzentrationsverteilung in der Ausbreitungsschicht und zu erhöhten Konzentrationen (bis zu einem Faktor 10 in 10 bis 20 km Abstand). Das könnte bei hypothetischen Störfällen in Mühleberg für die Belastung in Bern von grosser Bedeutung sein.

Van der Hoven (1976) hat eine sehr interessante Untersuchung über Diffusionsexperimente bei austauscharmen Wetterlagen angestellt. Die Versuche wur-

den in mehreren Gegenden mit verschiedenartigster Bodenbeschaffenheit angestellt. Seinen Angaben zufolge wird mit dem Pasquillschen System (siehe z.B. IAEA 1968) die Konzentration bei Schwachwindlagen mit Inversion je nach Bodenrauhigkeit stark überschätzt. Er führt dies darauf zurück, dass die Ausbreitung quer zur Windrichtung grösser ist, als bisher angenommen. Die Ergebnisse sind jedoch etwas unsicher, da die Instrumentation oft ungenügend war und wegen lockerer Messnetze die Maxima oft unterschätzt wurden. Weil die Emissionen ausserdem am Boden erfolgten, zog in rauhem Gelände die Tracerwolke nachweislich in vielen Fällen über die Messpunkte hinweg.

Vermehrte Anstrengungen zur Untersuchung austauscharmer Wetterlagen sind, vor allem in Hinsicht auf die meteorologischen Daten, dringend notwendig.

5.7. Berücksichtigung der Topographie

Die Annahme einer flachen Ebene ist in Hinblick auf eine Anwendung auf die Umgebung von Mühleberg wohl der schwerwiegendste Nachteil der statistischen Ausbreitungsmodelle.

Einen Versuch, die Geländestruktur zu berücksichtigen, haben Gaglione et al. (1969) in Ispra (Italien) unternommen. Sie setzten für die effektive Emissionshöhe jeweils die Höhendifferenz zwischen dem interessierenden Geländepunkt und dem Emissionspunkt an. Mit einem Rechenprogramm wurde so die korrigierte Konzentrationsverteilung für ein unebenes Gelände berechnet. Diese Korrektur führt zu einer Erhöhung der berechneten Konzentrationen bis zu einem Faktor 10. Die im angeführten Bericht rapportierte experimentelle Verifikation war noch sehr unvollständig, liess jedoch eine grobe Uebereinstimmung erkennen.

Eine andere Möglichkeit für die Berücksichtigung der Geländestruktur wäre die Einführung von mehreren Spiegeltermen. Analog zur Berücksichtigung der Reflektion am Boden oder an Höheninversionen könnten unter Umständen andere Reflektionsebenen,wie z.B. Talhänge,mit Hilfe von symmetrischen virtuellen Quellen simuliert werden. Für ein so kompliziertes Gelände wie die Umgebung von Mühleberg kommt ein solcher Ansatz jedoch sicher nicht in Frage.

Es wurde versucht, die Messergebnisse der ersten elf Ausbreitungsexperimente bei Mühleberg (Xe-133-Methode) mithilfe des üblichen statistischen Ausbreitungsmodells zu erklären. Die Eignung einer Höhenkorrektur nach Gaglione et al. wurde dabei ebenfalls untersucht. Bei Verwendung der üblichen meteorologischen Eingangsdaten war die Uebereinstimmung sehr schlecht. Diese Berechnungen sind in Kapitel 7 genauer beschrieben.

5.8. Kurzbeschreibung einiger Computerprogramme

Bis heute wurde eine Fülle von Computerprogrammen entwickelt, die zur Simulierung der atmosphärischen Schadstoffausbreitung dienen. Schon 1969 zählte Winton (Winton 1969) 17 solche Rechenprogramme auf. Meist sind dies komplizierte Modelle zur Sicherheitsanalyse von Kernkraftwerken, die auch das Spaltproduktinventar, die Wirkung von Filtern und Barrieren sowie Dosen auf verschiedenen Belastungspfaden berechnen. Der Simulation der atmosphärischen Diffusion dient meist nur ein kleiner Teil dieser Programme, der sich von einem Code zum anderen oft nur wenig unterscheidet.

Hier kann nur eine kurze Uebersicht über eine kleine Auswahl der neueren Rechenmodelle gegeben werden.

Van der Hoven und Gammill führten 1969 eine vergleichende Untersuchung von elf verschiedenen Programmen durch. Darunter war auch RSAC (Coates und Horton 1966), ein sehr flexibler Code, dessen Ausbreitungsteil auf Suttons Formeln be-

ruht. Mit diesen Programmen wurde ein vorgegebener hypothetischer Störfall simuliert. Die resultierenden Gamma-Submersionsdosen wiesen grosse Unterschiede auf (Faktor 10 bis 10^3), was ausser anderen Ursachen auch auf verschiedene Integrationsmethoden und verschiedenartige Behandlung der Bodenreflektion zurückzuführen war. Die Pasquillsche Diffusionskategorie und die Windgeschwindigkeit waren dabei vorgegeben. Als Reaktion auf diese Untersuchung wurde im Auftrag der AEC das Programm RACER (Strenge et al. 1971) entwickelt. Es ist sehr umfassend, berechnet das Spaltproduktinventar, die Wirkung verschiedener Barrieren und Filter, den atmosphärischen Transport und verschiedene Dosen. Die Berechnung der atmosphärischen Ausbreitung erfolgt aufgrund des statistischen Diffusionsmodells, verschiedene Parametersätze (Sutton, Hanford, Pasquill) sind vorprogrammiert, es können aber auch andere beliebig eingegeben werden. Es wird keine Reflektion am Boden oder an einer Höheninversion angenommen. RACER ist speziell zur Beurteilung der Auswirkungen von Reaktorstörfällen geeignet.

WEERIE (Clarke 1973) ist ebenfalls ein umfassendes Programm, das in England entwickelt wurde. Die Ausbreitungsrechnung basiert auf Pasquill und seinen Parametern. WEERIE wird auch für regionale Untersuchungen verwendet (Macdonald et al. 1974).

HERMES ist ein sehr umfangreiches Programm zur Abschätzung der Umwelteinflüsse einer Kernindustrie mit mehreren Emittenten auf regionaler Basis (Soldat et al. 1973, AEC 1973). Geeignete Teile davon wurden für die Anwendung auf einzelne Emittenten umprogrammiert. Das so entstandene Programm GRONK (Soldat et al 1973) berechnet mit Hilfe einer sektorengemittelten Gaussschen Langzeitausbreitungsfunktion ohne Bodenreflektion mehrere Dosistypen über die verschiedensten Belastungspfade. Detaillierte Angaben über lokale Gegebenheiten und Lebensgewohnheiten sind als Eingangsdaten erforderlich. Für den vertikalen Ausbreitungsparameter werden wahlweise die Werte nach Pasquill oder Fuquay Simpson (Hanford) eingesetzt. Dieses Programm wurde von der AEC im Rahmen von Genehmigungsverfahren für kerntechnische Anlagen routinemässig verwendet.

AIREM (Martin et al. 1974) ist ebenfalls ein Modell zur Beurteilung der Langzeiteffekte. Wie HERMES arbeitet es mit einer sektorengemittelten Langzeitausbreitungsfunktion. Reflektionen am Boden und an Höheninversionen werden berücksichtigt. Zur Charakterisierung der Ausbreitungsbedingungen werden die Diffusionskategorien nach Pasquill und die Parameter nach Turner (1971) verwendet. Die Verwendung von sektorengemittelten Werten und damit die Elimination von σ_{V}) führt nach Martin und Nelson (1974) für grosse Distanzen zu kleineren und für kleine Distanzen zu grösseren Dosen als ein binormales Fahnenmodell (wie es zum Beispiel in Jülich für die Berechnung der Langzeitbelastung verwendet wird). AIREM ist sehr übersichtzlich und dient lediglich zur Berechnung der Ausbreitung und der Dosen.

WRED (Cooper 1969) geht von einem etwas anderen Ansatz aus. Es kann beliebig viele meteorologische Datengruppen (Temperaturdifferenz, Windrichtung und -geschwindigkeit) aus laufenden Messreihen mit grosser Geschwindigkeit verarbeiten und berechnet daraus die Häufigkeitsverteilung der Dosiswerte in verschiedenen Geländepunkten. Nach einem in Brookhaven entwickelten System wird die Diffusionskategorie jeweils aus den Messwerten bestimmt. die Ausbreitung wird nach der üblichen Gauss-Formel ohne Bodenreflektion berechnet.

<u>DIFPCT</u> ist ein kürzlich vom Service de la Protection de l'Air in Payerne (Schweiz) entwickeltes Modell (ISM 1976). Es behandelt lediglich die Schadstoffausbreitung, beruht auf den Formeln von Sutton und unterscheidet vier Diffusionskategorien. Reflektion am Boden und an einer Höheninversion werden berücksichtigt, bei stark variierendem Wind kann über die y-Achse integriert werden. Das Modell kann bis zu zehn Quellen berücksichtigen und erlaubt die Ueberlagerung mehrerer Fahnen zur Simulation nicht-stationärer Zustände.

5.9. Vor- und Nachteile des statistischen Ausbreitungsmodells

Für die Verwendung des heute weit verbreiteten statistischen Diffusionsmodells spricht sein einfacher mathematischer Apparat und seine einfache Handhabung. Ohne komplizierte und zeitraubende schrittweise Berechnungen kann die einfache Formel für den Ausbreitungsfaktor für die verschiedensten Bedingungen schnell gelöst werden. Langjährige Erfahrung und eine Reihe von ausgereiften Rechenprogrammen stehen zur Verfügung. Das Gausssche Rauchfahnenmodell stellt in seiner üblichen Version mit vorgegebenen Parametersätzen sehr geringe Anforderungen an die meteorologischen Ausgangsdaten. Im einfachsten Falle sind dies synoptische Beobachtungen zur Ermittlung der Diffusionskategorie, sowie Windrichtung und Windgeschwindigkeit in Emissionshöhe.

Gerade in der Unfähigkeit jedoch, wesentlich mehr meteorologische Daten verarbeiten zu können, liegt die entscheidende Schwäche des statistischen Diffusionsmodells, denn es gibt kein physikalisches Modell, das die Atmosphäre mit so wenig Parametern genügend genaubeschreiben könnte. Die vereinfachenden Annahmen, die zur Entwicklung der Theorie notwendig waren (siehe Abschnitt 3.5.), führen unter ungünstigen Bedingungen zu unakzeptablen Fehlern. Van der Hoven (1974) hat gezeigt, dass im regionalen Massstab selbst bei relativ ebenem Gelände die Verwendung einer einzigen Windmessstation anstatt eines Windfeldes zu grossen Fehlern führt.

6. DIE PARTICLE-IN-CELL METHODE

6.1. Grundlagen

Das statistische Diffusionsmodell versucht im Grunde, die atmosphärische Diffusionsgleichung (3.5) bzw (3.7) analytisch zu lösen. Dazu ist es, wie wir gesehen haben, jedoch notwendig, vereinfachende Voraussetzungen zu machen, die die Anwendbarkeit des Modells stark einschränken. Deshalb wurde versucht, die Diffusionsgleichung numerisch zu lösen. Die zunöchst verwendeten Box-Modelle (MacCracken et al. 1972, siehe auch Abschnitt 3.3.), die mit einem endlichen Differenzenverfahren arbeiteten konnten zwar veränderliche meteorologische Bedingungen, Windprofile, komplizierte Topographie und photochemische Prozesse berücksichtigen, jedoch trat infolge der Verwendung von endlichen homogenen Boxen eine sogenannte "künstliche Diffusion" auf. Um ähnlichen Schwierigkeiten mit endlichen Differenzenverfahren begegnen zu können, war in der Hydrodynamik die sogenannte Particle-in-cell Methode entwickelt worden. Sklarew, Fabrick und Prager wandten sie erstmals auf die atmosphärische Diffusion an und nannten sie PICK, wobei das K auf die Verwendung der K-Theorie hindeuten soll (Sklarew et al. 1971).

Bezieht man in die atmosphärische Ausbreitungsgleichung allgemein die Windgeschwindigkeiten u, v, w (= u_n) ein, so wird (3.5) zu:

$$\frac{\partial \chi}{\partial t} = -\vec{u} \frac{\partial \chi}{\partial x} - \vec{v} \frac{\partial \chi}{\partial y} - \vec{w} \frac{\partial \chi}{\partial z} + \frac{\partial \chi}{\partial x} (K_x \frac{\partial \chi}{\partial x}) + \frac{\partial \chi}{\partial y} (K_y \frac{\partial \chi}{\partial y}) + \frac{\partial \chi}{\partial z} (K_z \frac{\partial \chi}{\partial z})$$

$$= -\vec{u}_A \operatorname{grad} \chi + \operatorname{div} (K \operatorname{grad} \chi)$$
(3.17)

Da K grad χ den turbulenten Fluss darstellt, kann eine Diffusionsgeschwindigkeit

$$\vec{u}_D = \frac{\kappa}{\chi} \operatorname{grad} \chi \tag{3.18}$$

definiert werden. Dass die Diffusion hier durch eine Geschwindigkeit ausgedrückt wird, ist das wirklich neue an der PICK-Methode. Führen wir nun die sogenannte Pseudogeschwindigkeit

$$\vec{\mathbf{u}} = \vec{\mathbf{u}}_{\mathbf{h}} + \vec{\mathbf{u}}_{\mathbf{h}} \tag{3.19}$$

ein, dann wird unter der Annahme einer inkompressiblen Hauptströmung (div $\hat{\vec{u}}_n = 0$) die Ausbreitungsgleichung zu:

$$\frac{\partial \chi}{\partial t} + \operatorname{div} \left(\chi \cdot \overrightarrow{u} \right) = \frac{\partial \chi}{\partial t} \quad \frac{\partial u \chi}{\partial x} \quad \frac{\partial v \chi}{\partial y} \quad \frac{\partial w \chi}{\partial z} = 0 \tag{3.20}$$

Dies entspricht der Kontinuitätsgleichung für eine kompressible Flüssigkeit.

Die Schadstoffe werden nun durch eine grosse Anzahl von Tracerpartikeln repräsentiert, die sich in einem Zellensystem ausbreiten. Jedem Partikel wird eine bestimmte Schadstoffmenge zugeordnet. Wie schon in Abschnitt 3.4. angedeutet, erfolgt die Simulation der Teilchenausbreitung schrittweise (siehe z.B. das Flussdiagramm von XPIC in Abb.3.8.). Zuerst werden aus der Partikelverteilung volumengewichtete Zellenkonzentrationen berechnet (Abb.3.9.b) Aus diesen lassen sich dann nach der, in eine Differenzengeleichung verwandelten, Formel (3.18) die Diffusionsgeschwindigkeiten aun den Zelleneckpunkten berechnen (Abb.3.9.c). Zusammen mit den Advektionsgeschwindigkeiten un werden daraus die entsprechenden Pseudogeschwindigkeiten er-

2-dimensional case

$$v_{xD} = -\frac{\kappa_x}{\tilde{c}} \frac{\langle \Delta c \rangle}{\langle \Delta x \rangle}_{x}$$

$$v_{xD} = -2 \frac{\kappa_x \langle c_2 + c_3 - c_1 - c_4 \rangle}{\Delta x \langle c_1 + c_2 + c_3 + c_4 \rangle}$$

- (a) Typical 'box' mesh (2-dimensional view).
- (b) Calculation of cellular concentrations with weighting of the particle positions (2-dimensional view).
- (2-dimensional view).
 (c) Calculation of diffusion velocity by finite difference algorithm.

<u>аьь. з.э.</u>

(aus Schultz et al.,1975)

mittelt Mit einer zweiten Volumenwichtung erhält man die Transportgeschwindigkeit der Partikel, die dann um einen Zeitschritt t fortbewegt werden.

Verschiedenste Ablagerungs- Zerfalls- und chemische Reaktionsvorgänge während des Transports können berücksichtigt werden. Allerdings ist dann für jeden sich verschieden verhaltenden Schadstoff eine eigene Ausbreitungsrechnung notwendig. Der radioaktive Zerfall von Spaltprodukten kann, da er lediglich zeitabhängig ist, separat berücksichtigt werden.

Durch die Zellenanordnung und das eingegebene Windfeld kann jedes beliebige Gelände betrachtet werden. Die PICK-Methode macht keine prinzipielen Einschränkungen für mögliche Randbedingungen und stellt damit die allgemeinste und bis heute beste Methode zur Lösung der Ausbreitungsgleichung dar.

6.2. Bestehende Rechenprogramme und erste Anwendungen

Das Programm <u>NEXUS</u> wurde für die Untersuchung der Luftverschmutzung auf regionaler Skala entwickelt und auf die CO-Verteilung im Becken von Los Angeles angewendet (Sklarew et al. 1971). Mit ca 1400 Zellen und 163 Zyklen wurde das CO-Verhalten über 17 Stunden in 12 Minuten auf einem UNIVAC 1108 mit 60 K Speicher simuliert. Die berechneten Durchschnittskonzentrationen wichen um + 20% von den Messwerten ab. Meteorologische Daten aus früheren Untersuchungen wurden vollständig spezifiziert eingegeben. Die Version NEXUS/P kann ausserdem Photochemische Reaktionen berücksichtigen.

ADPIC ist eine ähnliches, aber weiter entwickeltes Modell (Lange, 1973 Crandall et al., 1973). Seine maxilamel Kapazität sind 25 000 Zellen und 30 000 Partikel. Bei dieser Grösse braucht es ca. 0,07 min/Zyklus und praktisch den gesamten Kernspeicher auf einem CDC-7600 Computer, was für eine durchschnittliche Anwendung 1/100 der Realzeit entspricht. Es kann ein festes oder expandierendes Zellensystem fast beliebiger Grösse gewählt werden (1 bis 1000 km). Ist jedoch die Standardabweichung der Schadstoffwolke kleiner als die Zellengrösse , wird die Transportgeschwindigkeit zu gross. Deshalb müssen kontinuierliche Punktquellen in Quellennähe mit besonderen Verfahren behandelt werden. Die anfängliche Partikelverteilung an der Quelle ist gaussförmig und wird durch einen Zufallszahlengenerator festgelegt. Das Auswaschen wird durch Verringern der mit den Partikeln assoziierten Schadstoffmasse simuliert. Der Output enthält sowohl die Konzentrationsverteilung in der Luft als auch am Boden (von Ablagerungen). Das benötigte Windfeld wird von einem speziellen Programm (MACAW) geliefert. Ueber die verwendeten Diffusionsparameter soll im nächsten Abschnitt kurz referiert werden. Ausführliche Testläufe mit verhältnismässig wenig Zellen und Tracerpartikeln für standardisierte, analytisch lösbare Probleme ergaben Abweichungen von höchstens + 5% von den analytisch gewonnenen Resultaten. ADPIC wurde bei der Erarbeitung der sogenannten Rassmussen-Studie intensiv eingesetzt. Eine Anwendung auf Auswascheffekte in unebenem Gelände zeigte deutlich die Ueberlegenheit gegenüber dem statistischen Modell (Lange, Knox, 1974).

Da auch nach intensiven Bemühungen die Programme NEXUS und ADPIC nicht erhältlich waren, hat eine Gruppe an der TU Hannover (BRD) das Programm XPIC entwickelt (Schultz et al. 1975, 1976, Wüneke et al. 1975). Die maximale Kapazität beträgt zur Zeit ca 10 600 Zellen und 30 000 Partikel. Testläufe ergaben selbst bei fehlender Advektion eine gute Uebereinstimmung mit analytisch gewonnenen Resultaten. Das Programm befindet sich noch im Erprobungsstadium, inbesondere fehlt noch ein geeignetes Windfeldprogramm.

6.3. Bestimmung der Diffusionskoeffizienten

Die einfachste Möglichkeit zur Bestimmung der Diffusionskoeffizienten ist die Umrechnung der in langjährigen Messreihen gewonnenen Werte für die Standardabweichung der gaussförmigen Rauchfahne nach dem statistischen Modell. Die erforderlichen K-Werte können mit den folgenden Formeln berechnet werden (siehe Schultz et al. 1976 und Lange 1973).

$$K_{i}(t) = 1/2 \frac{d\sigma_{i}^{2}}{dt}$$
 (3.21)

$$K_i(t) = 1/2 \frac{do^2}{dx}$$
 (3.22)

Im Gegensatz zur bei (3.7) angemerkten Umrechnungsformel wurden hier die K als zeit- bzw. ortsabhängig angenommen. Wie schon weiter oben ausgeführt, ist das notwendig, da mit wachsender Schadstoffwolke andere Teile des Wirbelspektrums an Einfluss gewinnen und damit die Diffusivität ändern.

Eine andere, direktere, wenn auch noch nicht ganz fertig entwickelte Methode zur Bestimmung der Diffusionskoeffizienten besteht in der Anwendung der Aehnlichkeitstheorie für die atmosphärische Bodenschicht (siehe Lange 1973). Das Verhalten von K wird durch die folgenden Formeln beschrieben:

$$K_{x} = K_{y} \propto \vec{u}(z) z^{-\frac{4}{3}} (\vec{\sigma_{x}})^{2/3}$$
 (3.23)

Dabei ist $\overline{o_{\mathbf{x}}^{\lambda}}$ die mittlere horizontale Ausdehnung der Wolke.

$$K_{z} = \left(\frac{kz}{\phi_{m}}\right)^{2} \frac{\partial \bar{u}}{\partial z} \tag{3.24}$$

Wobei

[7]

$$\phi_{m} = \frac{kz}{\sqrt{\tau \sqrt{\rho'}}} \frac{\partial \bar{u}}{\partial z}$$
 (3.25)

ein stabilitätsabhängiger, dimensionsloser Ausdruck für die Windscherung ist, dessen Abhängigkeit vom Stabilitätsparameter $\xi=z/L$ mit semiempirischen Formeln ausgedrückt werden kann. (Siehe auch Abschnitt 2.3.). Für die atmosphärische Bodenschicht sind diese Formeln in guter Uebereinstimmung mit den Messresultaten, oberhalb muss bis zur Mischungshöhe extrapoliert werden.

Wüneke et al. schlagen ein ähnliches Verfahren nach Blackadar vor.

Vogt et al. (1971) geben eine Methode für die Bestimmung des Höhenverlaufs der Diffusionskoeffizienten nach der K-Theorie an, die besonders für den Fall von Höheninversionen geeignet ist. Als Ausgangsdaten dienen Vektorwindfahnenmessungen und Radiosondenauftiege. Die Uebereinstimmung der gemessenen mit den berechneten Werten ist gut.

Zusammenfassend muss gesagt werden, dass die PICK-Methode auch in Bezug auf die Diffusionskoeffizienten dem Gaussschen Rauchfahnenmodell überlegen ist, da sie die mit letzterem gewonnen Ergebnisse vollumfänglich übernehmen kann ohne jedoch an diese Sichtweise gebunden zu sein. Die PICK-Methode kann beliebiges zeitliches und räumliches Verhalten der Diffusionskoeffizienten berücksichtigen und damit die verschiedensten Ansätze und Theorien testen und anwenden.

6.4. Bestimmung des Windfeldes

Zum XPIC-Rechenmodell soll ein geeignetes massenkonsistentes Windfeldprogramm entwickelt werden, das auch komplexe Geländestrukturen berücksichtigen kann. Für ADPIC existieren bereits solches Programm. Mit einem solchen Code kann aus den verfügbaren Messdaten ein Windfeld konstruiert werden, das mit der Topographie vereinbar ist. Je weniger Daten zur Verfügung stehen, um so weniger entspricht das berechnete Feld der Realität. Durch nachträgliche Erweiterung des Messnetzes kann das Modell zunehmend verfeinert werden. Die optimale Zahl der Messstationen hängt natürlich von der Geländeformation und der Simulationsdauer ab. In den Versuchen am NRTS (Van der Hoven, 1974, Lange und Knox 1974) wurden ca. 20 Stationen in einem Gebiet von 10 000 km² eingesetztund damit verhältnismässig gute Resultate erzielt.

6.5. Beurteilung

Wenn man die Modelle von ihrer Behandlung des Wirbelspektrums her betrachtet, dann liegt im Grunde der Vorteil des PICK-Modells darin, dass die künstliche Grenzziehung zwischen Advektion und Turbulenz, die unumgänglich ist, zu kleineren Wirbelgrössen hin verschoben werden kann. Je mehr Daten verarbeitet werden können, um so grösser ist diese Verschiebung und damit die Genauigkeit der Ergebnisse. Ueber flachem Gelände hat das Turbulenzspektrum tatsächlich eine Lücke (siehe Wippermann 1974), so dass die Grenzziehung für kurze Distanzen unproblematisch ist. Für unebenes Gelände trifft dies jedoch weniger zu. Deshalb ist die PICK-Methode zu Behandlung komplexer Topographien besonders geeignet. Weil sie für die Lösung der Ausbreitungsgleichung keine einschränkenden Bedingungen erforderlich macht, ist sie - bei Verwendung geeigneter Diffusionskoeffizienten - für beliebige Massstäbe verwendbar, was gegenüber allen bisherigen Methoden einen wesentlichen Vorteil darstellt. Ausserdem kann PICK beliebige Auswasch- und Ablagerungseffekte, chemische und photochemische Reaktionen sowie eine grosse Anzahl von Quellen auf eine übersichtliche Art berücksichtigen, was teilweise allerdings auch bei verschiedenen statistischen Modellen möglich ist.

Zur Ausnützung der genannten Vorteile sind allerdings auch entsprechend viele Eingangsdaten erforderlich. Solange diese jedoch nocht zur Verfügung stehen, können die gleichen einfachen Daten wie für statistische Modelle verwendet werden. Ausgehend davon kann das Modell mit zunehmendem messtechnischem Aufwand beliebig verfeinert werden.

Ein weiterer Nachteil ist, dass der Arbeitsaufwand zur Anpassung des Programms an die lokalen Gegebenheiten wesentlich grösser ist, als bei den statistischen Modellen.

Der wesentliche Nachteil gegenüber Rechenmodellen nach der statistischen Diffusionstheorie ist der grössere Rechenaufwand. Der benötigte Kernspeicher ist wesentlich grösser (3400 k 6-bit-bytes (CDC) für ADPIC gegenüber 188 k 8-bit-bytes (IBM) für AIREM). Die Rechenzeiten sind schwer zu vergleichen, da sie je nach Art der Anwendung variieren.

Schliesslich muss noch erwähnt werden, dass zur Zeit kein fertig entwickeltes Programm nach der PICK-Methode frei erhältlich ist. Das kann sich jedoch schnell ändern.

7. ANWENDUNG DES STATISTISCHEN DIFFUSIONSMODELLS AUF DIE ERGEB-NISSE DER ERSTEN AUSBREITUNGSEXPERIMENTE BEI MUEHLEBERG

7.1. Die Ausbreitungsexperimente

Nachdem die Entwicklung der Xe-Methode (siehe Teil II) abgeschlossen war, hat Herr Schriber vom Kernkraftwerk Mühleberg die entsprechenden Apparaturen übernommen und seither in Zusammenarbeit mit anderen Stellen mehrere Ausbreitungsexperimente durchgeführt. Die Dauer der Probennahme betrug 30 min. In der Regel waren 15 Messtationen im Einsatz. Um die Windverhältnisse während des Experimentes genauer zu erfassen, wurden kleine, im Gleichgewicht schwebende Wetterballone am Kaminfuss in den Abluftstrom eingebracht und mit einem Telemeter verfolgt. Da die Abgaberaten des KKM seit der Konzeption der Xe-Methode infolge eines Brennstoffwechsels ca. um einen Faktor hundert gesunken sind, hat es sich als notwendig erwiesen, für die Dauer des Experimentes den Aktivkohlefilter für die Abgase kurzzuschliessen. Die abgegebene Aktivität erhöht sich dadurch um einen Faktor zwei bis drei.

Freundlicherweise hat mir Herr Schriber die Ergebnisse der ersten elf Ausbreitungsexperimente zur Verfügung gestellt. Die folgenden Berechnungen und Ueberlegungen stellen keine Auswertung der Messergebnisse in Hinsicht auf die Langzeitausbreitungsfaktoren dar. Es soll hier lediglich untersucht werden, wie gut sich das statistische Diffusionsmodell eignet, um die vorliegenden Messwerte zu erklären oder vorauszusagen. Ausführliche Unterlagen über die Berechnungen finden sich in Anhang D.

7.2. Verwendete Formeln und Parameter

Grundlage der Berechnungen ist die übliche Ausbreitungsformel mit vollständiger Bodenreflektion (Gleichung 3. \mathbf{B}). Da nur Messwerte in Bodennähe vorlagen, konnte z=0 gesetzt werden. Damit ergibt sich:

$$\chi = \frac{Q}{\pi \ \overline{u} \ \sigma_{y} \sigma_{b}} \quad \exp \left(-\frac{y^{2}}{2 \sigma_{b}^{2}} - \frac{H^{2}}{2 \sigma_{b}^{2}}\right) \tag{3.26}$$

$$mit H = h + \Delta H$$

Dabei ist h die Ueberhoehung und Δ H die Höhe des Kamins bzw. (bei Höhenkorrektur, siehe 7.3.) die Höhendifferenz zwischen kaminöffnung und Messpunkt. Für die Parameter σ_{\bullet} und σ_{\bullet} wurden die Werte von Vogt und Geiss (1974) verwendet. Die x-Abhängigkeit der σ_{\bullet} wird durch den Potenzansatz

$$\sigma_i = p_i \times q_i \tag{3.27}$$

dargestellt. Mit aufwendigen Ausbreitungsexperimenten wurden in Jülich Mittelwerte von pund qui für die Wetterkategorien B,C,D,E und F bestimmt. Die Rauhigkeit des Geländes war grösser als bei den Prairie-Grass-Experimenten, die den meist verwendeten Pasquill-Parametern zugrunde liegen, jedoch kleiner als bei Mühleberg. Bei den Experimenten in Jülich betrug die Emissionsdauer eine Stunde. Unsere Messungen wurden bei kontinuierlicher Emission und einer Probennahmedauer von 30 min durchgeführt. Bei Slade (1968,p.154) wird eine Abschätzungsformel für den Einfluss der Probennahmezeit angegeben, demnach nimmt die gemessene mittlere Konzentration im Maximum ungefähr mit der fünften Wurzel der Messdauer ab. Das ergäbe in unserem Fall einen Faktor 0,87. Dieser Einfluss kann gegenüber den anderen Fehlen ohne weiteres vernachläs-

^{*}gemessen und ausgewertet von H.Völkle, KUeR, Freiburg

sigt werden.

Um die Genauigkeit des theoretischen Modells abschätzen zu können, muss ein geeignetes Mass für die Abweichung der berechneten von den gemessenen Konzentrationswerten gefunden werden. Da diese Werte sich teilweise um Grössenordnungen unterscheiden, sind Differenzen zwischen beiden Werten, wie sie üblicherweise verwendet werden, als Mass für die Abweichung nicht aussagekräftig. Deshalb wurde der Logarithmus des Zahlenverhältnisses

$$a = \lg_{\omega}(\chi_{\text{berechnet}} / \chi_{\text{gemessen}})$$
 (3.28)

als Masszahl für die einzelnen Abweichungen eingeführt. Zur Beurteilung der Messerien als Ganzes wurden der Mittelwert

$$\bar{a} = (\sum_{i=1}^{n} a_i)/n$$
 (3.29)

und die Standardabweichung

$$s = \sqrt{\sum_{i=1}^{n} (a_i - \bar{a})^2 / n}$$
 (3.30)

der Abweichungen aller Messresultate für jeden Ausbreitungsversuch verwendet. Diese Masszahlen erlauben eine einfache und übersichtliche Darstellung der Uebereinstimmung zwischen gemessenen und berechneten Werten. Zu beachten ist, dass infolge des Logarithmus bei der Berechnung der Standardabweichung die starken Abweichungen schwächer berücksichtigt werden, als dies bei einer linearen Funktion der Fall wäre. Dieser Effekt ist jedoch erwünscht.

7.3. Ergebnisse mit üblichen Eingangsdaten

Zunächst wurden alle Experimente mit den üblicherweise verwendeten Eingangsdaten ohne Variation der Parameter durchgerechnet. Für Windrichtung und -geschwindigkeit wurden die routinemässig vom KKM in 120 m Höhe am Abluftkamin (Gesamthöhe 125 m) gemessenen Werte eingesetzt. Die Wetterkategorie und die zugehörigen Ausbreitungsparameter wurden nach Vogt bestimmt(Vogt 1970, Vogt und Geiss 1974). Die Ueberhöhung schliesslich wurde aus der Beobachtung von Ballontrajektorien abgeschätzt. Die Lage der Messpunkte, die Ballontrajektorien und die Windrichtung sind in den Abbildungen 3.10 bis 3.20 dargestellt.(Für genauere Daten siehe Schriber 1978). Die Ergebnisse der Berechnungen wurden in der Tabelle 3.1 zusammengefasst. Wegen messtechnischer Schwierigkeiten konnten für eine grosse Zahl von Messpunkten nur obere Grenzen angegeben werden. In diese Berechnungen wurden lediglich die vollwertigen Messresultate einbezogen. Zur Berücksichtigung der Topographie wurde teilweise eine Höhenkorrektur nach Gaglione et al. (siehe Abschnitte 5.7. und 7.2.) verwendet.

Zwei Ausbreitungsexperimente (Nr.3 und Nr.7) konnten nicht ausgewertet werden. Bei Nr.7 lag der einzige deutliche Messwert so weit ausserhalb der vermutlichen Abluftfahne, dass mit einem Fehler bei der Messung gerechnet werden muss. Bie Experiment Nr.3 wechselte der Wind dreimal während der Probennahme.

Bei den Experimenten 6, 8, 9 und 10 wehte der Wind in Richtung Salvisberg. In dieser Richtung steigt das Gelände verhältnismässig gleichförmig an, deshalb sollten sich hier die Resultate mit dem statistischen Modell einigermassen annähern lassen. Berechnet man Mittelwert und Standardabweichung über die Abweichungen für alle Messpunkte bei diesen Versuchen, so ergeben sich die Werte $\bar{a}_{tot}^{=-2,94}$ und $\bar{s}_{tot}^{=5,09}$. Bei schematischer Anwendung dieses üblichen

Abb. 3.10 Ausbreitungsversuch Nr. 1 $vom\ 18.8.76$, 10.15h bis 10.45h

vollständige Messwerte: 1, 2, 3, 4 obere Grenzen : 5,6

Pilotballone:

A: 10.17 ... 10.27 h B: 10.29 ... 10.39 h C: 10.43 ... 10.53 h

mittlere Windgeschwindigkeit:

3,8 + 1,4 m/s (Ballone) 4,0 + 1,5 m/s (Kamin)

mittlere Windrichtung:

65° + 10° (Kamin)

Ueberhöhung: 10 m

Umgebungstemp.: 18°C

Bedeckungsgrad: 0/8

Kategorie: B

Abb. 3.11 Ausbreitungsversuch Nr. 2 vom 15.9.76 , 10.15 h bis 10.45 h

Pilotballone:

A: 10.15 ... 10.18 h B: 10.28 ... 10.33 h C: 10.38 ... 10.39 h

D: 10.44 ... 10.45 h

mittlere Windgeschwindigkeit:

5,1 + 1,2 m/s (Ballone) 4,5 + 1,5 m/s (Kamin)

mittlere Windrichtung:

285 <u>+</u> 10° (Kamin)

Ueberhöhung: 20 m Umgebungstemp.: 10°C

Bedeckungsgrad: 8/8

Kategorie: D , Regen

vollständige Messwerte : 5, 9, 10

obere Grenzen: 1, 2, 3, 4, 6, 7, 8, 11, 12, 13

gemessene Windrichtung optimierte Windrichtung (siehe 7.5)

Abb. 3.12 Ausbreitungsversuch Nr. 3 vom 13.10.76 , 10.15 h bis 10.45 h

vollständige Messwerte: 2, 3, 10, 12

obere Grenzen :

Rest

Auswertung wegen stark wechselnder Windrichtung unmöglich

Pilotballone: A : 9.41 ... 9.47 h
B : 9.53 ... 9.55 h
C : 10.04 ... 10.09 h
D : 10.13 ... 10.16 h
E : 10.32 ... 10.34 h
F : 10.47 ... 10.48 h

mittlere Windgeschwindigkeit : $1,7 \pm 1$ m/s (Ballone)

 $1,0 \pm 0,5 \text{ m/s (Kamin)}$

Windrichtung (Kamin): $10.00 ... 10.30 h : 50^{\circ} + 15^{\circ}$

10.00 ... 10.30 h : $50^{\circ} + 15^{\circ}$ 10.20 ... 10.25 h : $300^{\circ} + 15^{\circ}$ 10.25 ... 10.45 h : $240^{\circ} - 330^{\circ}$ 10.45 ... 10.55 h : $330^{\circ} + 15^{\circ}$

10.45 ... 10.55 h : 330° ± 15°

Ueberhöhung: 15 m Umgebungstemp.: 9,5 °C Bedeckungsgrad: 8/8

Kategorie : C , Regen

Abb. 3.13 Ausbreitungsversuch Nr. 4 vom 10.11.76 , 11.00 h bis 11.30 h

vollständige Messwerte: 1, 2, 4, 5, 6 obere Grenzen 3, 7, 8

Pilotballone:

A: 11.00 ... 11.05 h B: 11.09 ... 11.14 h

C: 11.16 ... 11.19 h D: 11.25 ... 11.30 h

E: 11.34 ... 11.40 h

mittlere Windgeschwindigkeit:

 $2,3 \pm 1,3$ m/s (Ballone) $1,2 \pm 0,5$ m/s (Kamin)

Windrichtung (Kamin):

11.00 ... 11.15 h : 30° + 15° 11.15 ... 11.45 h : 285° + 5°

Ballone oberhalb 1200 m (C): Südwind

Ueberhöhung: 40m Temperatur: 9^OC

Bedeckungsgrad: 7/8

Kategorie: D

Abb. 3.14 Ausbreitungsversuch Nr. 5 vom 24.11.76 , 11.00 h bis 11.30 h

vollständige Messwerte: 1, 2, 3, 4, 5, 7 obere Grenzen: 6, 8, 9, 10, 11

Pilotballone:

A: 10.53 ... 10.59 h

B: 11.00 ... 11.02 h C: 11.08 ... 11.15 h

D: 11.18 ... 11.25 h *

E : 11.28 ... 11.49 h

F : 11.38 ... 11.49 h

* Richtungsänderung in ca 1200 m Höhe

mittlere Windgeschwindigkeit:

 $2,7 \pm 0,5 \text{ m/s}$ (Ballone) 2,5 + 0,5 m/s (Kamin)

mittlere Windrichtung: 195° + 5° (Kamin)

Ueberhöhung : 35 m

Umgebungstemp.: 3°C

Bedeckungsgrad: 5/8

Kategorie : D

Abb. 3.14 Ausbreitungsversuch Nr. 6 vom 8.12.76 , 10.50 h bis 11.20 h

Pilotballone: A: 10.50 ... 10.53 h

B: 11.00 ... 11.06 h C: 11.10 ... 11.14 h D: 11.15 ... 11.21 h

mittlere Windgeschwindigkeit:

 $8,1 \pm 2,3$ m/s (Ballone)

 $5,0 \pm 1$ m/s (Kamin)

mittlere Windrichtung:

230° <u>+</u> 10° (Kamin)

Ueberhöhung : ≈5 m

Umgebungstemp.: 6° C

Bedeckungsgrad: 8/8

Kategorie: D

L-Mühleberg Gross - Milleberg vollständige Messwerte: 11, 14 restliche Punkte obere Grenzen : Windgeschw.: Ueberhöhung: 100m 0,7 m/s (Ballone) 0,4 m/s (Kamin)

Abb. 3.15 Ausbreitungsversuch Nr. 7 vom 5.1.77 , 11.00 h bis 11.30 h

Pil	.ot	ballor	e:			mittl.
Α	:	10.25		10.33	h	1,6 <u>+</u>
В	:	10.35		10.42	h	0,8 +
С	:	10.45		10.52	h	mittle:
D	:	10.55		11.00	h	80°+
E	:	1103		11.10	h	80 <u>+</u> :
F	:	11.13		11.19	h	
G	:	11.23		11.32	h	
E.	D:	: gleid	che 1	Bahn		De

ere Windrichtung: Kategorie: D

5 (Kamin) (Kamin)

Der Messwert bei Punkt 11 kann als "Ausreisser" betrachtet werden. Der ganze Versuch wurde daher bei der Auswertung nicht berücksichtigt.

Abb. 3.16 Ausbreitungsversuch Nr.8 vom 26.1.77 , 11.00 bis 11.30 h

vollständige Messwerte: 4, 15

obere Grenzen :

restliche Punkte

Pilotballone:

A: 10.55 ... 11.02 h

B: 11.05 ... 11.08 h C: 11.11 ... 11.19 h

D: 11.22 ... 11.28 h

E: 11.31 ... 11.40 h

mittlere Windgeschwindigkeit:

7,0 + 7,0 m/s (Ballone)5.0 + 1.0 m/s (Kamin)

Windrichtung (Kamin): 248 + 5

Ueberhöhung: ≈15m

Umgebungstemp.:

Bedeckungsgrad: 8/8

Kategorie : C

Nebelschwaden, z.T. Nieselregen

Abb. 3.17 Ausbreitungsversuch Nr. 9 vom 16.2.77 , 10.30 h bis 11.00 h

vollständige Messwerte: 2, 3, 4, 5, 6, 7, 8, 9, 10

obere Grenzen :

11, 12

Pilotballone:

A: 10.25 ... 10.31 h

B : 10.34 ... 10.39 h

c: 10.45 ... 10.50 h

D: 10.52 ... 10.55 h

E: 11.00 ... 11.06 h

A und D gleiche Bahn

mittlere Windgeschwindigkeit:

7,4 + 2,4 m/s (Ballone)

4,7 + 1,0 m/s (Kamin)

Windrichtung (Kamin):

 $230^{\circ} + 10^{\circ}$

20 m Ueberhöhung:

Bedeckungsgrad: 7/8

Kategorie:

feine Neuschneedecke

Abb. 3.18 Ausbreitungsversuch Nr. 10 vom 4.3.77 , 10.30 h bis 11.00 h

vollständige Messwerte: 1, 2, 4, 5, 6, 7, 8, 9 obere Grenzen: 3, 10, 11

Pilotballone: A : 10.26 ... 10.37 h

B: 10.40 ... 10.49 h C: 10.52 ... 10.58 h D: 11.03 ... 11.05 h

mittlere Windgeschwindigkeit:

 $5,8 \pm 2,3 \text{ m/s (Ballon)}$ $4,0 \pm 1,0 \text{ m/s (Kamin)}$

Windrichtung: $240^{\circ} \pm 10^{\circ}$

Ueberhöhung : ≈40 m

Kategorie: D

Abb. 3.19 Ausbreitungsversuch Nr. 11 vom 16.3.77 , 10.30 h bis 11.00 h

vollständige Messwerte: 1, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15

obere Grenzen :

2, 3, 12

Pilotballone : A : 10.10 ... 10.19 h

B: 10.22 ... 10.32 h C: 10.35 ... 10.48 h

D: 10.50 ... 10.59 h

E: 11.00 ... 11.05 h

mittlere Windgeschwindigkeit:

2,5 + 1,2 m/s (Ballone) 1,6 + 0,5 m/s (Kamin)

Windrichtung: $300^{\circ} \pm 30^{\circ}$

Ueberhöhung : 55 m (aus anderen Versuchen abgeschätzt)

Bedeckungsgrad 2/8

Kategorie: B

Ausbreitungsmodells wurde also die Bodenkonzentration an den insgesamt 27 Messpunkten in diesen vier Versuchen in geometrischen Mittel um einen Faktor 870 unterschätzt. Bei den Versuchen Nr.2 und Nr.11 zeigen die Parameteruntersuchungen (siehe 7.5), dass die Ausbreitung ebenfalls gegen Salvisberg hin erfolgte, obwohl die Windmessung etwas anderes anzeigte. Wenn man auch diese Versuche in die vorige Ueberlegung einbezieht, so ergibt sich für diese Ausbreitungsrichtung eine noch viel gravierendere Unterschätzung der effektiven Bodenkonzentrationen in der nähere Umgebung.

Aus anderen Richtungen liegen nur wenige Messungen vor (siehe Tab.3.1). Bei Versuch Nr.1 (Richtung Horn) und Nr.5 (Richtung Oberruntigen), bei denen das Terrain in Ausbreitungsrichtung sehr steil ansteigt, stimmt das Modell verhältnismässig gut. Bei Versuch Nr.4 war die Windrichtung stark höhenabhängig, wie die Ballontrajektorien zeigen. Deshalb liefert das übliche Modell hier keine brauchbaren Ergebnisse.

Zusammenfassend muss festgestellt werden, dass das statistische Ausbreitungsmodell mit den gebräuchlichen Parametern schematisch angewendet nur ein unzulängliches Hilfsmittel zur Berechnung von Kurzzeitverdünnungsfaktoren in der Umgebung des KKM darstellt.

Tabelle 3.1 Berechnung mit üblichen Eingangsdaten

Ausbreitung in Richtung Salvisberg

110001	creany		CITCUIT	g barv.	200019					
Vers. Nr.	α [°]	Kat.	h [m]	_ u [m/s]	M*	b*	ā	S	Anz. a > 1	max.a
6	230	D	5	5	9	9	- 0,44	1,10	3	- 2,72 - 1,59
8	248	С	15	5	2	2	-16,60	5,63	2	-22,23 -10,97
9	230	D	20	4,7	9	9	- 3,45	3,69	6	- 9,77 - 9,00
10	240	D	40	4	7	7	- 1,59	2,89	2	- 7,54 - 4,32
2	285	D	20	4,5	3	2	- 3,75	2,34	3	- ∞ - 6,09
11	300	B	55	1,6	12	10	- 7 , 55	8,06	11	- ∞ - ∞
Andere	e Rich	tungen								
1	65	В	10	4	4	4	0,27	0,74	1	1,02 0,96
4	285	D	40	1,2	5	0	•		5 ma	1 🛷
5	195	D	35	2,5	6	6	- 0,04	0,89	1	- 1,55 - 0,90

^{*} M : Anzahl der vollwertigen Messresultate beim betreffenden Experiment b : Anzahl der für die Berechnung von a und s benützten Resultate max.a : die beiden grössten Einzelabweichungen

¹⁾ also des Gaussschen Modells (Formel 3.26) mit Höhenkorrektur und Jülicher Parametern, siehe Abschnitt 7.2.

7.4. Parameterstudien und Höhenkorrektur

Da die experimentelle Bestimmung der verschiedenen Parameter meist problematisch und fehlerhaft ist, wurden die Parameter in einer bestimmten Reihenfolge so variiert, dass die Standardabweichung s der Abweichungen a minimal wird.

Für die Festlegung der Reihenfolge müssen die einzelnen Parameter zunächst näher betrachtet werden.

Die Quellstärke Q ist am genauesten messbar. Gegenwärtig bietet die Messung noch einige Probleme, der dadurch entstehende Fehler des Ausbreitungsfaktors lässt sich jedoch wahrscheinlich gegenüber anderen Fehlern vernachlässigen. Q geht ebenso wie die wesentlich schwerer zu bestimmende mittlere. Windgeschwindigkeit als linearer Faktor in die Gleichung ein. Deshalb wurde auf eine Variation von Q verzichtet.

Die mittlere Windgeschwindigkeit u ist als Mittelwert über die Ausbreitungsschicht definiert. Ihre Bestimmung ist daher im uneinheitlichen Gelände bei Mühleberg problematisch. Sie geht als linearer Faktor in die Gleichung ein und beeinflusst daher wegen des Logarithmus in Gl. 3.28 nicht die Standardabweichung, sondern nur den Mittelwert der Einzelabweichungen a..

Noch schwerer zu bestimmen ist, aus schon mehrmals erwähnten Gründen, die Ausbreitungsrichtung &. Nach ihr richtet sich die Ausrichtung der x-Achse. Dadurch wird die gesamte Verteilung grundlegend beeinflusst.

Die σ_i gehen in den Exponenten der Formel ein und bestimmen damit die Steilheit der Gauss-Kurve in y- und z-Richtung, sowie deren x-Abhängigkeit. Da erst wenige Messdaten vorhanden sind, kann eine Anpassung der pund qui (siehe Gl. 3.27) nicht durchgeführt werden. Deshalb wurde nur die Wetterkategorie optimiert, durch die die σ_i nach den Angaben von Vogt und Geiss (1974) festgelegt werden.

Die Ueberhöhung h schliesslich beeinflusst die Höhe der Achse der Abluftfahne und damit die Verteilung der logarithmischen Abweichung in x- und z-richtung. Die gegenwärtige Bestimmung von h mit Hilfe von Ballontrajektorien ist problematisch und liefert zu geringe Werte. Auf die verschiedenen Berechnungsformeln, die zu sehr unterschiedlichen Ergebnissen führen, soll hier nicht näher eingegangen werden.

Es ist offensichtlich, dass zuerst die Windrichtung variiert werden muss, damit die Verteilung ungefähr symmetrisch zur x-Achse verläuft. Anschliessend ist es zweckmässig, die Varianz der Gaussverteilung durch die Variation der Wetterkategorie und der Ueberhoehung zu korrigieren (es wurden beide Reihenfolgen verwendet). Schliesslich kann durch Anpassung der mittleren Windgeschwindigkeit der Mittelwert der Abweichungen auf Null korrigiert werden, die Standardabweichung ändert sich dadurch nicht.

7.5 Ergebnisse der Parametervariationen

Die Berechnungen wurden auf einem HP 2114 mit BASIC durchgeführt. Es wurde die Möglichkeit vorgesehen, die Parameteroptimierung auch unter Berücksichtigung der Messpunkte durchzuführen, für die nur obere Grenzen angegeben werden konnten (siehe auch 7.3.). Dabei werden die entsprechenden Abweichungen natürlich nur dann berücksichtigt, wenn sie positiv sind.

Insgesamt wurden die Parameter α , K, h und \bar{u} für jedes Ausbreitungsexperiment unter vier verschiedenen Bedingungen (mit/ohne Höhenkorrektur , mit/ohne obere Grenzen) und in zwei Reihenfolgen (α , K, h, \bar{u} und α , h, K, \bar{u}) so optimiert, dass die Standardabweichung ein Minimum wurde.

Mit dem im Anhang angegebenen Programm wurden die statistischen Daten für jedes Experiment zusammenfassend dargestellt (Tabellen siehe Anhang D). Für einen grossen Teil der Bedingungen wurden ausserdem die Einzelwerte für jeden Messpunkt berechnet, um eine detaillierte Untersuchung der topographischen

Tabelle 3.2

Ergebnisse der Parametervariation

Die Parameter wurden in der in den Tabellen angegebenen Reihenfolge optimiert.

Damit Variationen unter allen Bedingungen verglichen werden können, wurden die statistischen Daten einmal mit und einmal ohne Berücksichtigung der oberen Grenzen berechnet.

WETTERKAT. 1: Kategorie A, 2: B, 3: C, 4: D, 5: E, 6: F.

BEN.WERTE ist die Anzahl der bei der Berechnung der Standardabweichung benützten Werte

ABW.)FAKTOR 10 ist die Anzahl der Messpunkte, für die a > 1, d.h. für die der berechnete vom gemessenen Konzentrationswert um mehr als einen Faktor 10 abweicht

MAX.ABW. ist die grösste auftretende logarithmische Abweichung a. Der Wert 999999, bedeutet - , d.h. die berechnete Konzentration war praktisch Null (5·10⁻³⁸)

NR. 6 VARIATION DER PARAMETER

	AUS	VON	B15	STEF
WINDRICHTUNG	230	210	250	2
WETTERKAT.	4	2	6	1
UEBERHOEHUNG	5	6)	300	10
WINDGESCHW.	5			1

	MIT HOEHENKOL	MEKTUR	OHRE HOEHEMA	Dracher Tola
	MIT OBEREN	OHNE OBERE	MIT OBEREN	OHEN OBBASIS
	GRENZEN	GRENZEN	GHENZEN	GEPNZEN
WINDRICHTUNG	228	228	228	228
WETTERKAT.	2	8	2	£: ·
UEBERHOEHUNG	180	170	180	210
WINDGESCHW.	2.82027	2.44576	8.39844	1.74226
STATISTIK OHNE	OBERE GRENZEN	3		
STANDARDABW.	•435229	•434954	•417997	415686
BEN. WERTE	9	9	9	9
ABW.>FAKTOR 10	ı Ø	Ø	(-)	Ü
MAX . ABW .	603614	•546978	- • 617657	524238
STATISTIK MIT	OBEREN GRENZEN	j	•	
STANDARDABW.	·4286Ø2	•411159	•413659	•374609
BEN. WERTE	11	12	11	13
ABW.>FAKTOR 10	0	ย	(v)	Ü
MAX . ABW .	603614	•546978	617657	524238

NR. 6 VARIATION DER PARAMETER

	AUS	VON	BIS	STEP
WINDRICHTUNG	230	810	250	2
UEBERHOEHUNG	5	Ø	340	10
. WETTERKAT.	4	2	6	1
WINDGESCHW.	5			1.

MIT HOEHENKO		RREKTUR	OHNE HOEHEME GAREKTUR	
	MIT OBEREN	OHNE OBERE	MIT OBEREN	GHAE OBERE
•	GRENZEN	GRENZEN	GRENZ EN	Grenzen
WINDKICHTUNG	228	228	228	828
UEBERHOEHUNG	130	190	260	21317
WETTERKAT.	2	2	2	2
WINDGESCHW.	3.40161	2.2718	1.34561	1.57609
STATISTIK OHNI	OBEKE GRENZE	N		
STANDARDARV.	•438086	•436018	•423036	•416647
BEN. WERTE	9	9	9	9
ABW.>FAKTOR 16	i ()	Ø	63	(∕i
MAX . ABW .	655649	•557591	-•678917	578939
STATISTIK MIT	OBEREN GRENZE	N		
STANDARDABW.	•436978	•394536	•376586	•373166
BEN. WELTE	11	13	13	1.3
ABW .>FARTOR 10	i to	c)	, j	e)
MAX . ABW .	- • 655649	•557591	- • 678917	578939

NR. 8 VARIATION DER PARAMETER	, , , , , , , , , , , , , , , , , , ,	NR. 9 VARIATION DER PARAMETER	~ ~	
AUS VON WINDRICHTUNG 24B 235 WETTERRAT 3 2 UEBERHOEHUNG 15 9 WINDGESCHW 5	BIS STEP 250 1 6 1 300 10	AUS WINDRICHTUNG 230 WETTERKAT• 4 UEBERHOEHUNG 20 WINDGESCHW• 4•7	VON BIS STI 200 300 2 2 6 1 0 300 10	
MIT HOLHENKORKEKTUR MIT OBEREN OHNE GRENZEN GRENZ	OHNE HOEHENKORREKTUR OBERE MIT OBEREN OHNE OBERE EN GRENZEN GRENZEN	MIT HOEHENKONKE MIT OBEREN GRENZEN	EKTUR OHNE OBEAE GRENZEW	Onlike HOEHERKOMMERTUR BIT ODEMEN ORDE OFFICE GREENLEY GREENLEY.
WINDRICHTUNG 240 243 WETTELEAT• 6 3 UEBEAHOEHUNG 170 0 WINDRESCHW• 1•19260E-12 3•07	243 243 2 4 0 260 368E-15 •169066 2•11913E-27	WINDRICHTUNG 246 WETTERKAT 2 UEBERHOEHUNG 170 WINDGESCHW 1.11188	246 2 170 1.11188	246 246 2 2 130 130 1 • 04855 1 • 04655
HEN. WENTE 1 2 ABW.>FAKTOR 10 1 0	566E-03 .277275 0 2 1 2 1 565E-02 -6.12215 999999.	STATISTIK OHNE OBERE GRENZEN STANDARDABW2039 BEN. WERTE 9 ABW.>FAKTOR 10 0 MAX. ABW433899	.2039 9 0 433899	*225015 *225015 9 9 9 0 0 - 484967 - 484967
STATISTIK MIT OBEREN GRENZEN STANDARDABW. 3.11166 5.560 REN. WERTE 7 14 ABW.>FARTOR 10 7 12 RGX. ABW. 999999. 16.2	12 11 13	STATISTIK MIT OBEREN GRENZEN STANDARDABW2039 DEN. WERTE 9 ABW.>FAKTOR 10 Ø MAX. ABW433899	.2039 9 0 433899	.225015 .225015 9 9 0 0 484967484967
NH. K VARTATION DER PARAMETER		NR. 9 VARIATION DER PARAMETER		
AUS VON WINDRICHTUNG 248 235 UEBEAHOEHUNG 15 Ø WETTERKAT• 3 2 WINDGESCHW• 5	BIS STEP 250 1 300 10 6 1 1	AUS WINDRICHTUNG 230 UEBERHOEHUNG 20 WETTERKAT. 4 WINDGESCHW. 4.7	VON BIS STI 200 300 2 0 300 10 2 6 1	()
MIT HOEHENKOMÆKTUM MIT OBEREN OHNE GÆNZEN GÆNZ	OHNE HOEHENKORREKTUR OBERE MIT OBEREN OHNE OBERE EN GRENZEN GRENZEN	MIT HOEHENKORRE MIT OBEREN GRENZEN	EKTUR OHNE OBERE GRENZEN	OHME HOEHENWOMERTUM MIT OPEMEN OHME OBERGE GREEZEN GMENZEN
WINDRICHTUNG 240 243 UWBERHOEHUNG 10 0 WETTELAAT • 6 3 WINDGESCHW • • 703721 3 • 07	243 243 Ø Ø 6 4 368E-15 2.42028E-10 4.64775E-26	WINDRICHTUNG 246 UEBERHOEHUNG 80 WETTERKAT 2 WINDGESCHW 1.63318	246 80 2 1 •63318	246 246 0 0 2 2 1 • 79009 1 • 79009
BEN• WERTE 2 2 ABW•>FARTOR 10 2 0	560E-03 3.16476 2.46542E-02 2 2 2 0 565E-02 3.17962 6.23564E-02	BEN. WERTE 9 ABW.>FARTOR 10 0	•243385 9 8 -•532869	.263517 .263517 9 9 9 5 0 587334587324
STATISTIK MIT OBEREN GRENZEN STANDARDARW. 1.99638 5.56 BEN. WERTE 8 14 ABW.>FARTOR 10 6 12 EAX. ABW. -3.7569 16.2	15 14 14	STATISTIK MIT OBEREN GRENZEN STANDARDABV243385 BEN. VERTE 9 ABV.>FAETOR 10 6 MAX. ABV532869	•243365 9 0 ••532869	.283517 .263517 9 9 9 0 0 567324587324

					NR • 2				
Mi. 10					1011 - 2				
VARIATION DEA	PARAMETER				VARIATION DER 1	PARAMETER			
	ALIS	umi bis	STEP		1				
tirsit, ir Chermani	AUS 240	VOR BIS 200 300	2			AUS	VON BIS	STEP	
WINDMICHTUNG WETTELKAT.	4	200 500	1		WINDRICHTUNG	285	200 270	2	
·	4()	บ 300	10		WETTERKAT.	4	2 6	1 .	
OF DEBRIOERUNG	4	บ 300	1		UEBERHOEHUNG	20	Ø 300	10	
WINDGESCHW.	74		1	•	WINDGESCHW.	4.5		1	
	MIT HOERENKOL		OHNE HOEHENK			MIT HOEHENKOM	REKTUR	OHME HOEHEN	KORINE IVT OIL
	MIT OBEREN	OHNE OBERE	MIT OBEREN	OHNE OBERE		MIT OBEREN	OHNE OBERE	MIT OBERER	OHME OBERE
	GREYZEN	GHENZEN	GRENZEN	GRENZEN		GRENZEN	GRENZEN	GRENZEN	GRENZEN
WINDALICHTUNG	256	256	256	256	WINDRICHTUNG	238	238	246	238
LETTELLAT.	2	2	2	2		2	2	6	8
UKRELHUEHUNG	160	166	150	150	WETTERKAT.	70	Ø	(1)	γ)
William Children	1.96673	1.90673	1.62537	1.62537	UEBERHOEHUNG		8 • 40 9 3 4	•159066	% 8•86551
					WINDGESCHW.	5.34631	6 • 40 9 5 G	• 1 3 20 00	v • v 0 2 2 1
	CONSIDE GRENZEM				STATISTIK OHNE	OBERE GRENZEN			
STANDARDABU.	• 16634b	166348	•172526	•172526	STANDARDABW.	•147338	•145353	·172018	145975
DEN. WELTE	7	7	7	7	BEN. WERTE	3	3	3	3
AUGE.>FARTOR 10		Ω	\mathbf{G}	Ω	ABW.>FARTOR 10	Ø	6)	4/1	64
FOM . ABW.	.337031	•33 7 831	•35505	•35505	MAX . ABW .	549618	•199215	241168	•Humber
CONTRACTOR CONTRACTOR	ODES DE CUESTANA								
	OBELEN GRENZEN	: •166348	.172526	·17z526	STATISTIK MIT				
STAMBARDARW.	•166348	•100346 7	1	7	STANDARDABW.	•387596	•352905	•392z1	•3619č1
SEM. UERTE	7	Ø	v W	(i)	BEN. WERTE	7	10	6	i ()
ABW.>FARTOR 16					ABW.>FAKTOR 10	2	3	3	3
MAX. ABW.	•337831	•337831	•35505	• 35 50 5	MAX . ABW .	999999•	999999•	999999•	999999 • \$
				- et al					
Nit • 10					MR . 9				
NH• 10 VAKIATION DER	PARAMETER				NR. 2 VARIATION DER 1	PARAMETER			
		DON DIG	(T)		1				
VARIATION DER	Aŭ5	VON BIS	- Hatz		VARIATION DER 1	AUS	VON BIS	STEP	
VARIATION DER WIEDWICHTUNG	Au5 240	200 300	ន		VARIATION DER 1	AUS 285	200 270	본	
VARIATION DER WINDAICHTUNG ORBERHOEHUNG	AUS 240 46	800 300 0 300	2 10		VARIATION DER F WINDRICHTUNG UEBERHOEHUNG	AUS 285 20	200 270 0 300	ន 1ប	
WINDAICHTUNG UEDEAHOEHUNG UETTERKAT.	AUS 240 46 4	200 300	2 10 1		VARIATION DER MUNDRICHTUNG UEBERHOEHUNG WETTERKAT.	AUS 285 20 4	200 270	2 10 1	
VARIATION DER WINDAICHTUNG ORBERHOEHUNG	AUS 240 46	800 300 0 300	2 10	•	VARIATION DER F WINDRICHTUNG UEBERHOEHUNG	AUS 285 20	200 270 0 300	ន 1ប	
WINDAICHTUNG UEDEAHOEHUNG UETTERKAT.	AUS 240 46 4	800 300 0 300	2 10 1	•	VARIATION DER MUNDRICHTUNG UEBERHOEHUNG WETTERKAT.	AUS 285 20 4	200 270 0 300	2 10 1	
WINDAICHTUNG UEDEAHOEHUNG UETTERKAT.	AUS 240 46 4 4 MIT HOEHENKOF	250 300 0 300 2 6	OHNE HOEHEN		VARIATION DER MUNDRICHTUNG UEBERHOEHUNG WETTERKAT.	AUS 285 20 4	200 270 0 300 2 6	2 10 1	s Ož. INEKTUK
WINDAICHTUNG UEDEAHOEHUNG UETTERKAT.	AUS 240 46 4 4 MIT HOEHENKOF	200 300 0 300 2 6 RREKTOR OHNE OBERE	OHNE HOEHENI OHNE OBEREN	OHNE OBERE	VARIATION DER MUNDRICHTUNG UEBERHOEHUNG WETTERKAT.	AUS 285 20 4 4.5	200 270 0 300 2 6	원 10 1 1	volmentuk ohnel cbere
WINDAICHTUNG UEDEAHOEHUNG UETTERKAT.	AUS 240 46 4 4 MIT HOEHENKOF	250 300 0 300 2 6	OHNE HOEHEN		VARIATION DER MUNDRICHTUNG UEBERHOEHUNG WETTERKAT.	AUS 285 20 4 4.5	200 270 0 300 2 6	B 10 1 1 OHME INCEREN	
VAKIATION DER WINDAICHTUNG UEDERHOEHUNG UETTERKAT. WINDGESCHW.	AUS 240 46 4 4 MIT HOEHENKOP MIT OBEREN GRESZEN	200 300 0 300 2 6 RREKTOR OHNE OBEAE GRENZEN	2 10 1 1 OHNE HOEHENI MIT OBEKEN GAENZEN	OHNE OBERE GRENZEN	VARIATION DER MUNDRICHTUNG UEBERHOEHUNG WETTERKAT. WINDGESCHW.	AUS 285 20 4 4.5 MIT HOEHENKORE MIT OBEREN GRENZEN	200 270 0 300 2 6 REKTUR OHNE OBERE GRENZEN	2 10 1 1 OHME HOEHEM MIT OBEREN GREEZEN	OHME CBEATE GLENZEN
WINDAICHTUNG UETTERRAT. WINDGESCHW.	AUS 240 46 4 4 MIT HOEHENKOP MIT OBENEN GARBEEN	200 300 0 300 2 6 THERTUR OHNE OBERE GRENZEN 256	2 10 1 1 1 OHNE HOEHENI MIT OBEKEN GAENZEN 256	OHNE OBERE GRENZEN 256	VARIATION DER MUNDRICHTUNG UEBERHOEHUNG WETTERKAT. WINDGESCHW.	AUS 285 20 4 4.5 MIT HOEHENKORE MIT OBEREN GRENZEN 238	200 270 0 300 2 6 BEKTUR OHNE OBERE GRENZEN 238	2 10 1 1 1 1 1 1 OHME HOEHEM MIT OBEALN GREEZEN 2/15	OHNE CBERE GRENZEN 238
WINDAICHTUNG UEDEAHOEHUNG UETTERRAT. WINDGESCHW.	AUS 240 46 4 4 MIT HOEHENKOP MIT OBEREN GREWZEN 256 256	260 300 0 300 2 6 THERTUR OHNE OBERE GRENZEN 256 250	2 10 1 1 OHNE HOEHENI MIT OBEREN GRENZEN 256 230	OHNE OBERE GRENZEN 256 230	VARIATION DER METTERKAT. WINDRICHTUNG WETTERKAT. WINDGESCHW. WINDRICHTUNG UEBERHOEHUNG	AUS 285 20 4 4.5 MIT HOEHENKORE MIT OBEREN GRENZEN 238 70	200 270 0 300 2 6 REKTUR OHNE OBEITE GRENZEN 238 40	2 10 1 1 OHME ITOEHEM MIT OBEALN GREAZEM 2/10 50	OHNE CBEAE GAEAZEN 238 6
WINDATION DER WINDATCHTUNG UETTERKAT. WINDGESCHW. WINDGESCHW. WINDATCHTUNG ÜEBERHOEHUNG WETTENKAT.	AUS 240 46 4 4 MIT HOEHENKOP MIT ODEREN GARWZEN 256 250 2	260 300 0 300 2 6 WHERTOR OHNE OBERE GRENZEN 256 250 2	2 10 1 1 OHNE HOEHENI MIT OBEKEN GAENZEN 256 230 2	OHNE OBERE GRENZEN 256 230 2	VARIATION DER METTERKAT. WINDRICHTUNG WETTERKAT. WINDGESCHW. WINDRICHTUNG UEBERHOEHUNG WETTERKAT.	AUS 285 20 4 4.5 MIT HOEHENKORE MIT OBEREN GRENZEN 238 70 2	200 270 0 300 2 6 REKTUR OHNE OBERE GRENZEN 238 40 2	2 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	OHNE CBERE GRENZEN 238 0 2
WINDAICHTUNG UEDEAHOEHUNG UETTERRAT. WINDGESCHW.	AUS 240 46 4 4 MIT HOEHENKOP MIT OBEREN GREWZEN 256 256	260 300 0 300 2 6 THERTUR OHNE OBERE GRENZEN 256 250	2 10 1 1 OHNE HOEHENI MIT OBEREN GRENZEN 256 230	OHNE OBERE GRENZEN 256 230	VARIATION DER METTERKAT. WINDRICHTUNG WETTERKAT. WINDGESCHW. WINDRICHTUNG UEBERHOEHUNG	AUS 285 20 4 4.5 MIT HOEHENKORE MIT OBEREN GRENZEN 238 70	200 270 0 300 2 6 REKTUR OHNE OBEITE GRENZEN 238 40	2 10 1 1 OHME ITOEHEM MIT OBEALN GREAZEM 2/10 50	OHNE CBEAE GAEAZEN 238 6
WINDATION DER WINDATCHTUNG UETTERRAT. WINDGESCHW. WINDGESCHW. WINDGESCHUNG WETTERRAT. WINDGESCHW.	AUS 240 46 4 4 MIT HOEHENKOF MIT OBENEN GARREEN 256 250 2 1.13514 E OBERE GREEZEN	260 300 0 300 2 6 **THERTOR OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFI OFFI OFFI OFFI OFFI OFFI OFFI OFF	2 10 1 1 1 OHNE HOEHENI MIT OBEKEN GAENZEN 256 230 2 .980253	OHNE OBERE GRENZEN 256 230 2 •980253	VARIATION DER METTERKAT. WINDRICHTUNG WETTERKAT. WINDGESCHW. WINDRICHTUNG UEBERHOEHUNG WETTERKAT.	AUS 285 20 4 4.5 MIT HOEHENKORM MIT OBENEN GRENZEN 238 70 2 5.34631	200 270 0 300 2 6 REKTUR OHNE OBERE GRENZEN 238 40 2	2 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	OHNE CBERE GRENZEN 238 0 2
WINDATION DER WINDATCHTUNG UETTERKAT. WINDGESCHW. WINDGESCHUNG ÜEBERHOEHUNG WETTERKAT. WINDGESCHW. STATISTIK OHN.	AUS 240 46 4 4 MIT HOEHENKOP MIT OBENEN GREWZEN 256 250 2 1.13514 E OBERE GREWZEN .23252	260 300 0 300 2 6 RITERTUR OHNE OBEAE GHENZEN 256 250 2 1.13514	2 10 1 1 1 OHNE HOEHENI MIT OBEKEN GAENZEN 256 230 2 •980253	OHNE OBERE GRENZEN 256 230 2 •980253	WINDRICHTUNG UEBERHOEHUNG WETTERKAT. WINDGESCHW. WINDRICHTUNG UEBERHOEHUNG WETTERKAT. WINDGESCHW.	AUS 285 20 4 4.5 MIT HOEHENKORM MIT OBENEN GRENZEN 238 70 2 5.34631	200 270 0 300 2 6 REKTUR OHNE OBERE GRENZEN 238 40 2	2 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	OHNE CBERE GRENZEN 238 0 2
WINDAICHTUNG UEDEAHOEHUNG UETTERRAT. WINDGESCHW. WINDAICHTUNG ÜEBERHOEHUNG WETTERRAT. WINDGESCHW. STATISTIK OHN STANDARDABV. BEN. WERTE	AUS 240 46 4 4 MIT HOEHENKOP MIT OBEREN GREWZEN 256 250 2 1.13514 E OBERE GREEZEN .23252 7	260 300 0 300 2 6 WHERTOR OHNE OBERE GRENZEN 256 250 2 1.13514	2 10 1 1 OHNE HOEHENI MIT OBEKEN GRENZEN 256 230 2 .980253	OHNE OBERE GRENZEN 256 230 2 •980253 •226203	WINDRICHTUNG UEBERHOEHUNG WETTERKAT. WINDGESCHW. WINDRICHTUNG UEBERHOEHUNG WETTERKAT. WINDGESCHW.	AUS 285 20 4 4.5 MIT HOEHENKORE MIT OBEREN GRENZEN 238 70 2 5.34631 OBERE GRENZEN	200 270 0 300 2 6 REKTUR OHNE OBERE GRENZEN 238 40 2 2.3122	2 10 1 1 1 OHME HOEHEM MIT OBEMEN GRENZEN 2/10 50 2 5.38981	0HMM. CBERE GREAZEM 238 0 2 2.26551
WINDATION DER WINDATCHTUNG UETTERKAT. WINDGESCHW. WINDGESCHUNG ÜEBERHOEHUNG WETTERKAT. WINDGESCHW. STATISTIK OHN.	AUS 240 46 4 4 MIT HOEHENKOP MIT OBEREN GREWZEN 256 250 2 1.13514 E OBERE GREEZEN .23252 7	260 300 0 300 2 6 RITERTUR OHNE OBEAE GHENZEN 256 250 2 1.13514	2 10 1 1 OHNE HOEHENI MIT OBEKEN GAENZEN 256 230 2 .980253	OHNE OBERE GRENZEN 256 230 2 •980253 •226203 7 0	WINDRICHTUNG UEBERHOEHUNG WETTERKAT. WINDGESCHW. WINDRICHTUNG UEBERHOEHUNG WETTERKAT. WINDGESCHW. STATISTIK OHNE STANDARDABW.	AUS 285 20 4 4.5 MIT HOEHENKORE MIT OBEREN GRENZEN 238 70 2 5.34631 OBERE GRENZEN .147338	200 270 0 300 2 6 REKTUR OHNE OBERE GRENZEN 238 40 2 2.3122	2 10 1 1 1 OHNE HOEBEN SIT OBEAEN GREEZEN 245 50 2 5.36981	0HMM. CBERE GREAZEM 208 0 2 2.26551
WINDAICHTUNG UEDEAHOEHUNG UETTERRAT. WINDGESCHW. WINDAICHTUNG ÜEBERHOEHUNG WETTERRAT. WINDGESCHW. STATISTIK OHN STANDARDABV. BEN. WERTE	AUS 240 46 4 4 MIT HOEHENKOP MIT OBEREN GREWZEN 256 250 2 1.13514 E OBERE GREEZEN .23252 7	260 300 0 300 2 6 WHERTOR OHNE OBERE GRENZEN 256 250 2 1.13514	2 10 1 1 OHNE HOEHENI MIT OBEKEN GRENZEN 256 230 2 .980253	OHNE OBERE GRENZEN 256 230 2 •980253 •226203	WINDRICHTUNG UEBERHOEHUNG WETTERRAT. WINDGESCHW. WINDRICHTUNG UEBERHOEHUNG WETTERRAT. WINDGESCHW. STATISTIK OHME STANDARDARW. BEN. WENTE	AUS 285 20 4 4.5 MIT HOEHENKORE MIT OBEREN GRENZEN 238 70 2 5.34631 OBERE GRENZEN .147338 3	200 270 0 300 2 6 REKTUR OHNE OBERE GRENZEN 238 40 2 2 3122	2 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0HMM. CBERE GRENZEN 2 2 2.26551 .145975 3
WINDATION DER WINDATCHTUNG UETTERKAT. WINDGESCHW. WINDGESCHW. WINDGESCHW. STATISTIK OHN: STARBARDABW. BEN. PERTER ABW. >FARTOR 16 EAX. ABW.	AUS 240 46 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	260 300 6 300 2 6 SHERTOR OHNE OBERE GRENZEN 256 250 2 1.13514 0 .23252 7 5 540092	2 10 1 1 OHNE HOEHENI MIT OBEKEN GAENZEN 256 230 2 .980253	OHNE OBERE GRENZEN 256 230 2 •980253 •226203 7 0	WINDRICHTUNG UEBERHOEHUNG WETTERKAT. WINDGESCHW. WINDRICHTUNG UEBERHOEHUNG WETTERKAT. WINDGESCHW. STATISTIK OHNE STANDARDARW. BEN. PERTE ABW. PERTOR 10 MAX. ABW.	AUS 285 20 4 4.5 MIT HOEHENKORE MIT OBEREN GRENZEN 238 70 2 5.34631 OBERE GRENZEN .147338 3 9549618	200 270 0 300 2 6 REKTUR OHNE OBERE GRENZEN 238 40 2 2-3122 -145931 3	2 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0HM. CBERE GREAZEM 238 6 2 2.26551 -145775 3
WINDATION DER WINDATCHTUNG UETTERRAT. WINDGESCHW. WINDGESCHW. WINDGESCHW. STATISTIK OHN STABLARDARV. BEN. WERTE ADW.>FARTOR IN HAX. ABW. STATISTIK MIT	AUS 240 46 4 4 MIT HOEHENKOP MIT OBEREN GREWZEN 256 256 2 1.13514 E OBERE GREWZEN .23252 7 0 0540092 OBEREN GREWZER	260 300 0 300 2 6 NREKTOR OHNE OBEAE GRENZEN 256 250 2 1.13514 0 .23252 7	2 10 1 1 1 OHNE HOEHENI MIT OBEKEN GRENZEN 256 230 2 .980253 .226203 7 0 512856	OHNE OBERE GRENZEN 256 230 2 •980253 •226203 7 0 -•512856	WINDRICHTUNG UEBERHOEHUNG WETTERKAT. WINDRICHTUNG UEBERHOEHUNG UEBERHOEHUNG WETTERKAT. WINDGESCHW. STATISTIK OHNE STANDARDABW. BEN. WEATE ABW.>FAKTOR 10 MAX. ABW.	AUS 285 20 4 4.5 MIT HOEHENKORE MIT OBEREN GRENZEN 238 70 2 5.34631 OBERE GRENZEN .147338 3 0549618 OBEREN GRENZEN	200 270 0 300 2 6 REKTUR OHNE OBERE GRENZEN 238 40 2 2.3122 .145931 3 0 .195373	2 10 1 1 1 OHME HOEHEM MIT OBEMEN GRENZEN 245 50 2 5.38981 .800927 3 0 634953	0HMF CBERE GREAZEN 238 0 2 2.26551 •145975 3 6 •200884
WINDATION DER WINDATCHTUNG UETTERRAT. WINDGESCHW. WINDGESCHW. WINDGESCHW. WINDGESCHW. STATISTIK OHN. STANDARDARV. BEN. WERTE ABW.>FAKTOR IG HAX. ABW. STATISTIK MIT STANDARDARW.	AUS 240 46 4 4 MIT HOEHENKOF MIT OBENEN GARBZEN 256 250 2 1.13514 E OBERE GRENZEN .23252 7 0 0544092 OBEREN GRENZEN	260 300 0 300 2 6 NIMERTOR OHNE OBERE GRENZEN 256 250 2 1.13514 .23252 7 0 540092	2 10 1 1 1 0HNE HOEHENI MIT OBEREN GRENZEN 256 230 2 .980253 .226203 7 0 512856	OHNE OBERE GRENZEN 256 230 2 .980253 .226203 7 0512856	WINDRICHTUNG UEBERHOEHUNG WETTERKAT. WINDRICHTUNG UEBERHOEHUNG UEBERHOEHUNG WETTERKAT. WINDGESCHW. STATISTIK OHNE STANDARDABW. BEN. WERTE ABW.FAKTOR 10 MAX. ABW. STATISTIK MIT STANDARDABW.	AUS 285 20 4 4.5 MIT HOEHENKORE MIT OBEREN GRENZEN 236 70 2 5.34631 OBERE GRENZEN .147338 3 9549618 OBEREN GRENZEN .307596	200 270 0 300 2 6 REKTUR OHNE OBERE GRENZEN 238 40 2 2.3122 .145931 3 0 .195373	2 10 1 1 1 OHNE HOEHEM MIT OBENEN GREAZEN 245 50 2 5.38981 .200927 3 9 634953	0HMM CBERE GREAZEM 238 0 2 2.86551 .145075 3 6 .200884
WINDAICHTUNG UEBEAHOEHUNG UETTERKAT. WINDGESCHW. WINDGESCHW. WINDGESCHW. STATISTIK OHN: STANDARDABV. BEN. WERTE ABW.>FAKTOR IG HAX. ABW. STATISTIK MIT STANDARDABW. BEN. WERTE	AUS 240 46 4 4 MIT HOEHENKOP MIT OBEREN GREWZEN 256 250 2 1.13514 E OBERE GREEZEN .23252 7 0 0546602 OBEREN GREWZEN .23252 7	260 300 6 300 2 6 WHENTOR OHNE OBERE GRENZEN 256 250 2 1.13514 .23252 7 .540092	2 10 1 1 OHNE HOEHENI MIT OBEKEN GAENZEN 256 230 2 .980253 .226203 7 0 512856	OHNE OBERE GRENZEN 256 230 2 .980253 .226203 7 0512856	WINDRICHTUNG UEBERHOEHUNG WETTERRAT. WINDRICHTUNG UEBERHOEHUNG WETTERRAT. WINDGESCHW. STATISTIK OHME STANDARDABW. BEN. WERTE ABW.>FAKTOR 10 MAX. ABW. STATISTIK MIT (STANDARDABW. STATISTIR MIT (STANDARDABW.	AUS 285 20 4 4.5 MIT HOEHENKORE MIT OBEREN GRENZEN 238 70 2 5.34631 OBERE GRENZEN .147338 3 0549618 OBEREN GRENZEN .307596 7	200 270 0 300 2 6 REKTUR OHNE OBERE GRENZEN 238 40 2 2.3122 .145931 3 0 .195373	2 10 1 1 1 0HME I(OEHEM MIT OBEREN GREEZEN 245 50 2 5.38981 634953	0HM. CBERE GREAZEM 238 6 2 2.26551 .145975 3 6 .200884 .361961
WINDATION DER WINDATCHTUNG UETTERRAT. WINDGESCHW. WINDGESCHW. WINDGESCHW. WINDGESCHW. STATISTIK OHN. STANDARDARV. BEN. WERTE ABW.>FAKTOR IG HAX. ABW. STATISTIK MIT STANDARDARW.	AUS 240 46 4 4 MIT HOEHENKOP MIT OBEREN GREWZEN 256 250 2 1.13514 E OBERE GREEZEN .23252 7 0 0546602 OBEREN GREWZEN .23252 7	260 300 0 300 2 6 NIMERTOR OHNE OBERE GRENZEN 256 250 2 1.13514 .23252 7 0 540092	2 10 1 1 1 0HNE HOEHENI MIT OBEREN GRENZEN 256 230 2 .980253 .226203 7 0 512856	OHNE OBERE GRENZEN 256 230 2 .980253 .226203 7 0512856	WINDRICHTUNG UEBERHOEHUNG WETTERKAT. WINDRICHTUNG UEBERHOEHUNG UEBERHOEHUNG WETTERKAT. WINDGESCHW. STATISTIK OHNE STANDARDABW. BEN. WERTE ABW.FAKTOR 10 MAX. ABW. STATISTIK MIT STANDARDABW.	AUS 285 20 4 4.5 MIT HOEHENKORE MIT OBEREN GRENZEN 238 70 2 5.34631 OBERE GRENZEN .147338 3 9549618 OBEREN GRENZEN .307596 7	200 270 0 300 2 6 REKTUR OHNE OBERE GRENZEN 238 40 2 2.3122 .145931 3 0 .195373	2 10 1 1 1 OHNE HOEHEM MIT OBENEN GREAZEN 245 50 2 5.38981 .200927 3 9 634953	0HMM CBERE GREAZEM 238 0 2 2.86551 .145075 3 6 .200884

NR. 11 VARIATION DER PARAMETER

	AdS	VON	BIS	STEP
WINDRICHTUNG	3010	200	310	8
WETTERKAT.	8	8	6	1
UEBERHOEHUNG	ახ	(-)	300	10
WINDGESCHW.	1.6			1

	MIT HOEHENKOR	IKEKTUR	OHNE HOEHENKO	DRREKTUR
	MIT OBEREN	OHNE OBERE	MIT OBEREN	OHME OBERE
	Grahivzahi	GERBIZED	GRENZ EN	GRENZEN
WIEDWICHTONG	258	258	258	258
VETTERKAT.	8	8	ટ	5
UEBERHOEHUNG	170	170	60	60
WINDSESCHW.	•951414	•951414	1.05191	1.05191 ;
STATISTIC OHOR	OBERE GRENZEN	ì		
STANDARDARW.	•4685	•4685	•476782	•476782
BEN. WERTE	1 ()	10)	10	10
ABW.>FAKTOR 10	2	×	2	2
MAX . ABW .	999999•	999999•	999999•	999999•
STATISTIK MIT	OBENEN GRENZEN	i		
STANDARDARW.	·4685	•4685	•476782	•476782
BEN. WERTE	1 ()	1 0	10	10
ABL.>FARTOR 10	4	<i>I</i> 1	4 ;	4
\bullet Φ \bullet Φ \bullet	9999999•	999 999 •	999999•	999999.

NA. 11 VARIATION DER PARAMETER

	AUS	VON	BIS	STER
WINDRICHTUNG	300	200	310	2
UEBERHOEHUNG	55	ن	300	10
WETTERRAT.	2	2	6	1
WINDGESCHW.	1.6			1

	MIT HOEHENKOHREKTUR		OHNE HOEHENKORREKTUR		
	MIT OBEREN	OHNE OBERE	MIT OBEREN	OHNE OBERE	
	GRENZEN	GRENZEN	GRENZEN	GRENZEM	
WINDRICHTONG	258	258	258	258	
UEBEAHOEHUNG	170	170	60	60	
WETTERKAT.	2	2	2	2	
WINDGESCHW.	•951414	•951414	1.05191	1.05191	
STATISTIK OHE	E OBERE GREAZE	N			
STANDARDABW.	• 4685	•4685	•476782	•476782	
BEN. WERTE	133	10	10	1 ()	
ABW.>FAKTOR 10	1 2	2	8	٤.	
MAX: ABW:	9999999•	9999999•	999999•	9999999•	
STATISTIK MIT	OBJECTA GAZAZE	8			
STARBARDARW.	• 4655	•468 5	•476782	•476768	
BEN. WERTE	1.5	10	10	143	
ABW . > FARTOR 1.) 4	4	4	/ <u>i</u>	
EAX · ABW ·	999999•	99999 9 •	999999•	999999	

NR. 1 VARIATION DER PARAMETER

	AUS	NON	HIS	STEP
WINDRICHTUNG	65	Ø	100	<i>2</i> 3
WETTERKAT.	2	2	6	1
UEBERHOEHUNG	10	0	360	10
WINDGESCHW.	41			1

	MIT HOEHENKORREKTUR		CHAR HOEHERRORGERTUR	
	MIT OBEREN	OHNE OBERE	MIT OBELIED	Oliba Oblanta
	GRENZEN	GHENZEN	GMENNEN	GREAZEN
WINDRICHTUNG	62	64	60	69
WETTERKAT.	2	2	2	2 7
UEBERHOEHUNG	10	Ø	Ü	Ü
WINDGESCHW.	6.29676	7.89524	2 - 35045	5.45
STATISTIK OHNE	OBERE GRENZEN			
STANDARDABW.	.734177	•729047	•775744	•775744
BEN. WERTE	4	4	4	4
ABW.>FAKTOR 10	Ø	Ü	()	{}
MAX . ABW .	•84268	82824	898738	632844
STATISTIK MIT	OBEREN GRENZEN		,	
STANDARDABW.	.734177	•729047	•706216	•706216
BEN. WERTE	4	4	5	5
ABW.>FAKTOR 10	Ø	Ø	()	L)
MAX . ABW .	•84268	82824	 898 73 8	832844

NR. 1 VARIATION DER PARAMETER

	AUS	เดง	BIS	STEP
WINDRICHTUNG	65	Ø	100	22
UEBERHOEHUNG	1 Ø	Ø	300	1 છ
WETTERKAT.	2	2	6	1
WINDGESCHW.	4			1

	MIT HOEHENKORREKTUA MIT OBEREN OHNE OBERE		OHNE HOEHENKORKERTUK MIT OBEKEN OHNE OBEK	
	GRENZEN	GRENZEN	GMENZEN	GMENZEN
WINDRICHTUNG	62	64	60	60
UEBERHOEHUNG	10	න	Ø	U
WETTERKAT.	2	6	2	2
WINDGESCHW.	6.29676	4.31668	2 • 350/45	≥ •92
STATISTIK OHNE	OBEIGE GRENZEN			
STANDARDABW.	•734177	•644166	•775744	•775744
BEN. WERTE	4	Zj.	4	4
ABW.>FARTOR 10	6)	1	Ü	į j
MAX . ABW .	•84268	-1.00756	 898738	832844
STATISTIK MIT	ÖBEREN URENZEN			
		640160	•706816	.706216
STANDARDARW.	•734177	•644168		
BEN• WERTE	4	4	5	5
ABW.>FARTOR 10	(4)	1	vi	O 1
MAX • ABW •	•84268	-1.46756	- • × 9873b	- •832844

NAME A VARIATION DELV FALABETEL.

	กปร	VOr.	BIS	5 t e.:
WINDMICHTONG	2:65	160	260	12
LETTE	∠ 1	ដ	Ú	i
UEBEAHOEHUMG	4.1	IJ	306	1 to
WINDGESCHW.	1 •15	·		1

	MIT HOEBERROAGEATON		OHNE HOERENKORKERTUK	
	Fil T ObsErration	OHNE OSENE	Mariated T 14	OHAE OBERE
	GMECKEN	GLENZEM	GREENEE	GALNZEN
LINDRICHTUNG	206	206	206	206
VETTELEAT.	2	2	2	2
Orafleim (OEHOivG	ڭ	Ø	30	Ø
WINDGESCHW.	17.5984	1413638	13.1488	13.168
STATISTIK UNDE	OBERTE GRENZEN	!		
STANDARDAĐV.	•325h58	•325858	•320655	-311894
HEN. WELTE	3	3	3	3
ABW.>FAETOR 10	2	2	2	2
max. • ABW •	999999•	999999•	999999•	999999•
STATISTIK MIT	OBEREN GRENZEA)		
STANDARDABW.	.322411	.322411	•283589	•285913
BEN. WELTE	4	$I_{\mathbf{i}}$	4	Z _I
763W.>FARTOR 18	2	2	2	2
t.az aBW -	999999•	999999•	999999•	999999•

MA. 4. VARIATION BER PARAMETER

	ಗರವ	auv	BIS	STEP
WIEDETCHTUMG	2 85	180	260	2
UEBELLHOEHUNG	110	ិជ	300	10
VETTERKAT.	Ζį	2	6	1
VINDGESCHE.	1.2			1

	ETT HOFFENKOMMEKTON		OHNE HOEHENKORREKTUR	
	WIT OBEREA	OHNE OBERE	MIT OBEREN	OHNE OBERE
	Grenzien	CHENZEN	GAENZEN	GRENZEN
VIED. ICHTONG	206	206	206	206
UESERHORIDate	U	O	410	Ø
WEITERRAT.	23	2:	ટ	2
WINDGESCHW.	17.5984	14.3038	12.5295	13.168
STATISTIK OHNE	OBERE GRENZEI	∖		
STANDARDABW.	•325658	•325858	.324021	•311894
Biski - What is	3	3	3	3
alik. > FARTOR In	2	2	2	2
MAZ • ABW •	999999•	999999•	9999999.	999999•
STATISTIK WIT (obellen Grenzer			
STAMBARDARW.	• 3.2±411	•322411	•283985	·285913
BEN. VERTE	ż ₁	4	Z 1	./ ₁
ABL . > F.L. TO., 1.	2	2	2	2
Barille 1184.	99 9 995 •	9999999	999999 .	9999999.

VARIATION DER PARAMETER

	AUS	VON	ls I ti	STEP
WINDMICHTUNG	195	160	256	2
WETTERRAT.	4	2	6	1
UEBERHOEHUNG	35	Ø	300	10
WINDGESCHW.	2.5			1

	MIT HOEHENKORNEKTUR		OHNE HÖEHENKOMMEKTUM	
	MIT OBEREN	OHNE OBEKE	MIT OBELEX	OHNE OBENE
	GRENZEN	GRENZEN	GRENZEN	GRENZEN
WINDHICHTUNG	188	188	1 មម	1 មម
WETTERKAT.	2	2	2	2
UEBERHOEHUNG	220	220	160	160
WINDGESCHW.	2.56056	2.56056	2.10351	2.10351
STATISTIK OHNE	OBERE GRENZEN			
STANDARDABV.	•326491	.320491	•312087	•312087
BEN. WEHTE	6	6	ပ်	6
ABW.>FARTON 10	0	Ø	છ	Ø
MAX . ABW .	623596	623596	604336	604336
STATISTIK MIT (DBEREN GRENZEN			
STANDARDABW.	.320491	.320491 .	.312087	•31z0n7
BEN. WERTE	6	Ó	ΰ	6
ABW.>FAKTOR 10	2	2	జ	2
MAX . ABW .	999999•	999999•	999999•	999999.

NR. 5 VARIATION DER PARAMETER

	AUS	VON	BIS	STEF
WINDRICHTUNG	195	160	250	2
UEBERHOEHUNG	35	Ø	300	10
WETTERKAT.	4	2	6	1
WINDGESCHW.	2.5			1

	MIT HOEHENKOL	REKTUR	OHNE HOEHENKORNERTOR	
	MIT OBEREN	OHME OBENE	MIT OBEREA	OFFINE OFFINE
	GRENZEN	GRENZEN	GAENZEN	GRENZEN
WINDKICHTUAG	188	188	188	1c8
UEBERHOEHUNG	180	180	120	120
WETTERKAT.	2	2	22	긛
WINDGESCHW.	3.3358	3.335₺	2.82332	2.82332
STATISTIK OUN	E OBEKE GRENZE	N		
	.327843	.327843	•31934E	•31934z
BEN. WERTE	Ó	6	ပ်	6
ABW.>FARTOR 1	0 vi	<i>i</i>	t ;	ت
MAX . ABW .	689457	689457	672872	- • 672872
STATISTIK MIT	OBEREN GRENZE	N		
STANDARDABW.	.327843	•327843	•319342	•319342
BEN. WERTE	Ó	6	က်	Ó
ABW.>FARTOR 1	ø 2	2	2	22
MAX . ABW .	999999•	999999 •	999999	999999•

Einflüsse zu ermöglichen.

Zunächst interessiert, welche Art der Parametervariation zur besten Anpassung des Modells, d.h. zu den kleinsten Standardabweichungen führt (siehe Tabelle 3.2.). Welche Bedingungen zu besseren Ergebnissen führen, ist von Experiment zu Experiment verschieden. Es lassen sich daher nur statistische Aussagen machen. Die Beurteilung der Anpassung hängt kaum davon ab, ob die Standardabweichung mit oder ohne Einbezug der oberen Grenzen berechnet wird. Das Gesamtergebnis bleibt dasselbe. Am eindeutigsten lässt sich feststellen, dass kleinere Standardabweichungen erreicht werden, wenn die Wetterkategorie vor der Ueberhöhung variiert wird. Weiter lässt sich feststellen, dass die Variation unter Berücksichtigung der oberen Grenzen im allgemeinen zu schlechteren Anpassungen führt. Das ist nicht von vornherein selbverständlich, lässt sich aber dadurch erklären, dass im Laufe der Variation obere Grenzen ausser Betracht fallen können, wenn die Abweichung positiv wird. Da jeder Parameter nur einmal variiert wurde, stimmt die Optimierung der vor dem Ausfall variierten Parameter nicht mehr (siehe auch weiter unten unter "Mehrfache Variationen"). Schliesslich zeigt sich, dass in der Mehrheit der Fälle die Höhenkorrektur zu besseren Ergebnissen führt. Für einige Versuche (6, 4 und 5) gilt das allerdings nicht. Das ist nicht verwunderlich, da die verwendete Höhenkorrektur lediglich eine physikalisch nicht genau begründbare Hilfskonstruktion darstellt. Wenn z.B. das ansteigende Gelände als unendlich schiefe Ebene betrachtet werden kann, muss die Windrichtung parallel dazu verlaufen und eine Höhenkorrektur dieser Art wird sinnlos. Für die detaillierte Betrachtung der einzelnen Parameter soll daher im Folgenden nur die Variation ohne Berücksichtigung der oberen Grenzen und mit Höhenkorrektur untersucht werden.

Die Windrichtung. Als erster Parameter wurde die Windrichtung variiert. Die sich dadurch ergebenden Werte sind in Tabelle 3.3 zusammengefasst. Der Unterschied zwischen der optimierten und der am Kamin gemessenen Windrichtung beträgt im Mittel $|\Delta\alpha|=24^{\circ}$. Die Abweichungen a und ihre Standardabweichung s sinken durch diese Korrektur ganz beträchtlich. Es stellt sich die Frage, mit welchen Methoden die Ausbreitungsrichtung ohne Messung der Xenonkonzentrationen genauer bestimmt werden kann. Aus den Trajektorien von Ballonen, die während der Ausbreitungsexperimente im Kamin freigelassen wurden, kann man versuchen, eine mittlere Ausbreitungsrichtung abzuschätzen. In Tabelle 3.4 sind die entsprechenden Werte und die daraus berechneten Abweichungen aufgetragen. Die so bestimmten Ausbreitungsrichtungen weichen von den durch Variation ermittelten noch stark ab und die Standardabweichung s sinkt durch eine solche Korrektur wesentlich weniger.

Dass die Windrichtung am Kamin nicht der Ausbreitungsrichtung entspricht, lässt sich in einigen Fällen gut durch die Topographie erklären. So wird bei den Versuchen Nr.2 und Nr.7 der Wind offensichtlich vom Höhenzug bei Fuchsenried abgelenkt, bei nr.9 und nr.10 folgt der Wind der Krümmung des Tales. Da die Windrichtung jedoch höhenabhängig ist, sind Abschätzungen im Voraus äusserst schwierig. Das zeigt sich besonders bei den Versuchen 2, 11, und 4. Bei Nr.2 war der Auftrieb der Ballone offenbar etwas grösser als derjenige der Abluft, so dass die Ballone vom Höhenzug nicht abgelenkt wurden. Bei Nr. 11 war (infolge der kleineren Windgeschwindigkeit?) der Einfluss des Höhenzuges offenbar ausgeprägter, so dass auch die Ballone abgelenkt wurden. Bei Versuch Nr.4 wehte der Wind ab einer gewissen Höhe in entgegengesetzter Richtung (das zeigt vor allem die hier nicht dargestellte Projektion der Ballontrajektorien auf eine senkrechte Ebene), so dass die Abluftfahne aufgeteilt wurde und sowohl auf dem Horn, als auch bei Oberruntigen Xenon nachgewiesen werden konnte.

All dies zeigt, dass die Ausbreitungsrichtung durch ein einziges Windmessgerät nicht mit ausreichender Zuverlässigkeit angegeben werden kann. Durch eine bessere Kontrolle des Auftriebs der Ballone könnte die Abschätzung der Ausbreitungsrichtung mit Ballontrajektorien vielleicht noch um einiges verbessert werden. Die quantitative Behandlung von höhenabhängigen Windrichtungen bleibt jedoch mit dieser Methode problematisch. Ausserdem ist zu bedenken, dass für die Berechnung von Langzeitausbreitungsfaktoren ausführliche Wetterstatistiken notwendig sind, deren Bestimmung mithilfe von Ballontrajektorien unmöglich ist. Eine weitergehende Analyse der im meteorologischen Sicherheitsbericht (ISM 1967)zusammengestellten Winddaten von zwei Stationen in verschiedenen Höhen könnte hier vielleicht etwas weiterhelfen. Wahrscheinlich reichen jedoch zwei Messpunkte nicht aus, um die vielfältigen Effekte zu erfassen.

Tabe:	lle 3.	3	<u>o</u>	Optimierung der Windrichtung				-	
Nr.	М	α,	α _κ	Δα	bo	b _k	s ₀	s k	$\Delta s/s$.
6	9	230	228	- 2	9	9	1,10	1,09	-0,9 %
8	2	248	243	- 5	2	2	5,63	0,037	
9	9	230	246	+16	9	9	3,69	1,16	-68,5
10	7	240	256	+16	7	7	2,89	0,83	-71,3
2	3	285	238	-47	2	3	2,34	0,145	-93,8*
11	12	300	258	-42	·10	10	8,06	0,47	-94,1
-		6.5	<i>c</i>	-			0.54	0.73	
1	4	65	64	- 1	4	4	0,74	0,73	-1,1
4	5	285	206	-79	0	3	-	0,58	
5	6	195	188	- 7	6	6	0,89	0,56	-37,5
				· · · · · · · · · · · · · · · · · · ·				·	

1/2 = 2,53

16/50 600

Index 0 : Grösse vor der Optimierung
Index k : Grösse nach der Optimierung

Tabelle 3.4				Windricht	tungsko	rrektı	ır mit	Ballontra	ajektorien
Nr.	M	α ₀	∝ _k	Δα	p ⁰	b _k	s ₀	s k	∆s/s ₀
6	9	230	235	+ 5	9	9	1,10	1,48	-34,9 %
8	2	248	248	0	2	2	5,63	5,63	0
9	9	230	238	+ 8	9	9	3,69	2,05	-44,5
10	7	240	250	+10	7	7	2,89	1,22	-57,8
2	3	285	300	+15	2	2	2,34	4,99	+113,3
11	12	300	245	-55	10	10	8,06	0,81	-89,9
1	4	65	65	0	4	4	0,74	0,74	0
4	5	285*	20	-265*	0	2	-	1,23	-
5	6	195	195	0	6	6	0,89	0,89	0

Wetterkategorie und Ueberhöhung. Nach der Windrichtung wurden die Parameter k und h variiert. Die Wetterkategorie ist von grundlegenderer Bedeutung, da sie die Varianz der Verteilung in allen drei Dimensionen beeinflusst, während die Ueberhöhung in der y-Richtung lediglich den linearen Vorfaktor mitbestimmt. Daher ist es auch verständlich, dass man eine bessere Anpassung der theoretischen Verteilung erreicht, wenn die Wetterkategorie vor der Ueberhöhung optimiert wird. Die in den Tabellen 3.5 und 3.6 zusammengestellten Werte zeigen ausserdem, dass die Wetterkategorie von der Reihenfolge, in der die Parameter variiert wurden, überhaupt nicht und die Ueberhöhung davon nicht allzu stark beeinflusst wurde.

Bei der Optimierung von K standen lediglich Werte der Kategorien B, C, D, E und F zur Verfügung. Bei allen Variationen (ausser bei Versuch Nr.8, der wenig aussagt, weil eine Optimierung mit lediglich zwei Messwerten problematisch ist) erwies sich die labilste der verfügbaren Kategorien (B) als die geeignetste. Das von Jülich übernommene System von Ausbreitungsparametern und Wetterkategorien ist also für die Umgebung von Mühleberg nicht geeignet. Die grössere Bodenrauhigkeit in der Umgebung des KKM führt offenbar bei ähnlichen Wettersituationen zu einer wesentlich höheren atmosphärischen Turbulenz. Wie man aus Tabelle 3.5 ersehen kann, ist der Einfluss der Wetterkategorie auf die Abweichungen beträchtlich und hängt überdies kaum von der Reihenfolge der Optimierung ab.

Tabe]	lle 3.5	<u>.</u>	Op:	Optimierung der Wetterkategorie				
Nr.	М	R*	ĸ _O	ĸ _k	$b_0=b_k$	s ₀	s k	∆s/s ₀
6	9	1 2	D	B B	9 9	1,090 1,026	0,467 0,436	57,2 % 57,5
9	9	1 2	D	В В .	9 9	1,163 1,153	0,281 0,243	75 , 8 78 , 9
10	7	1 2	D	B B	7 7	0,820 0,617	0,221 0,233	73,0 62,2
2	3	1 2	D	B B	3 3	1,035 1,035	0,145 0,146	86,0 85,9
11	12	1 2	В	B B	10 10			0
1	4	1 2	В	B B	4 4			0
4	5	1 2	D	B B	3 3	0,582 0,553	0,347 0,236	40,4 57,3
5	6	1 2	D	B B	6 6	0,556 0,487	0,392 0,328	29,5 32,6

^{*} Reihenfolge der Parametervariationen: 1 : K vor h variiert für R = 1 : $\Delta s/s_0 = 45.2$ % 2 : h vor K variiert für R = 2 : $\Delta s/s_0 = 46.8$ %

Die Ueberhöhung ist für die Güte der Modellanpassung weniger wichtig (siehe Tab. 3.6.). Im allgemeinen wurde sie stark unterschätzt, meist liegen die Werte um 180 m, eine systematische Korrektur scheint aus diesen Daten jedoch noch nicht möglich.

Tabe	lle 3.0	<u>5</u>	<u>o</u>	ptimier	ung der l	Jeberhöhung	<u>L</u>	
Nr.	М	R	h ₀	h k	b ₀ =b _k	s ₀	s _k	∆s/s ₀
6	9	1 2	5	170 190	9 9	0,467 1,090	0,435 1,026	6,8 % 5,9
9	9	1 2	20	170 80	9 9	0,281 1,163	0,204 1,153	27,4 0,9
10	7	1 2	40	160 250	7 7	0,221 0,828	0,166 0,617	24,9 25,9
2	3	1 2	20	0 40	3 3	0,145 1,035	0,145 1,035	0 0
11	12	1 2	55	170 170	10 10	0,473 0,473	0,469 0,469	. 0,8 0,8
1	4	1 2	10	0 0	4 4	0,732 0,732	0,729 0,729	0,4 0,4
4	5	1 2	40	0 0	3 3	0,347 0,582	0,326 0,553	6,1 5,0
5	6	1 2	35	220 180	6 6	0,392 0,556	0,320 0,487	18,4 12,4
						für R = 1	: Δs/s ₀	= 10,6 %
						für R = 2		= 6,2 %

<u>Die Windgeschwindigkeit</u>. Da u nicht die Standardabweichung, sondern lediglich den Mittelwert der Abweichungen beeinflusst, wurde die Windgeschwindigkeit nicht wie die anderen Parameter variiert, sondern mithilfe der Formel

$$\bar{\mathbf{u}}_{\mathbf{k}} = \bar{\mathbf{u}}_{0} \cdot 10^{\bar{\mathbf{a}}} \tag{3.31}$$

so korrigiert, dass die mittlere Abweichung a Null wird. Die sich daraus ergebenden Werte sind in Tabelle 3.7 zusammengestellt. Dass der gemessene Wert im Mittel fast doppelt so hoch liegt wie der korrigierte, bedeutet nicht, dass die Ausbreitungsgeschwindigkeit tatsächlich so viel kleiner war, als die Windgeschwindigkeit am Kamin; das wäre bei den beträchtlichen Ueberhöhungen auch äusserst unwahrscheinlich. Diese Korrektur von \bar{u} gleicht offenbar ausserdem aus, dass auch mit den optimierten Parametern α , K und h die Bodenkonzentration noch leicht unterschätzt wurde. Die Unzulänglichkeit mus im Wesentlichen bei der Wetterkategorie, bzw. den Ausbreitungsparametern σ ; liegen. Der hohe Wert für die korrigierte Windgeschwindigkeit bei Versuch Nr.4 weist noch einmal darauf hin, dass dort die Windgeschwindigkeit höhenabhängig war und die Abluftfahne aufteilte.

Nr.	^u 0	u _k	u _k /u ₀
6	5	2,45	0,49
9	4,7	1,11	0,24
10	4	1,91	0,48
2 .	4,5	2,40	0,53
11	1,6	0,95	0,59
1	4	7,90	1,98
4	1,2	14,30	(11,92)
5	2,5	2,56	1,02

geometrisches Mittel ohne Nr. 4: 0,62

Mehrfache Variation der Parameter. Wenn die Parameter nicht gänzlich unabhängig voneinander sind, hängt das Resultat einer Optimierung von den Werten der anderen Parameter und damit insgesamt von den Ausgangswerten ab. Um diesen Einfluss zu prüfen und den Einfluss der oberen Grenzen zu untersuchen, wurde das Programm so umgeschrieben, dass der Zyklus der Optimierungen nicht nur einmal, sondern so oft durchlaufen wird, bis keine weitere Verbesserung der Werte möglich ist. Mit diesem Programm wurden mehrere Ausbreitungsexperimente untersucht, dabei wurden die Anfangsbedingungen wie bei den einfachen Variationen gewählt, die Schritte jedoch kleiner ($\Delta \alpha: 1^{\circ}$, $\Delta H: 1m$).

Für die meisten dieser Rechnungen liegen nur die Endergebnisse vor. Sie sind in Anhang D wiedergegeben. Die auf diese Weise erzielten Resultate unterscheiden sich meist nicht sehr von den mit einfacher Variation gewonnenen. Bei den Versuchen Nr. 9 und Nr. 5 jedoch konnte die Standardabweichung noch um 7,8% bzw. 15% gesenkt werden. Die Windrichtungsunterschiede liegen bei 1 bis 2 Grad, die Unterschiede in der Ueberhöhung betragen bis zu 25 m. Die Anzahl der benötigten Variationszyklen liegt zwischen 4 und 7, wovon ein grosser Teil für das Ausgleichen von Rundungsfehlern bei der Windgeschwindigkeitskorrektur benötigt wird, wie Zwischenergebnisse von Versuch 6 zeigen. Ein grosser Teil der erzielten Verfeinerungen ist wohl auf die kleinere Schrittweite zurückzuführen. Lediglich die Höhenkorrektur und natürlich die Windgeschwindigkeit zeigen eine deutliche Abhängigkeit von den anderen Parametern.

Dort wo obere Grenzen eine Rolle spielen (Versuche Nr. 6 und Nr. 2) führen die beiden Parameterreihenfolgen zu leicht verschiedenen Ergebnissen. Besonders Nr. 2 zeigt, dass die Berücksichtigung der oberen Grenzen in dieser Weise wohl nicht sinnvoll ist.

Insgesamt kann mit diesem Vorgehen also eine noch etwas bessere Optimierung der Parameter erreicht werden. Die zuvor gemachten Aussagen werden durch die erhaltenen Werte bestätigt.

7.6. Schlussfolgerung

Das statistische Ausbreitungsmodell mit den gebräuchlichen Parametern stellt schematisch angewendet nur ein unzulängliches Hilfsmittel zu Berechnung von Kurzzeitausbreitungsfaktoren in der Umgebung des KKM dar. Die Xenonkonzentrationen in der näheren Umgebung werden bei neutralen Bedingungen in der Hauptwindrichtung meist um mehr als eine Grössenordnung unterschätzt.

Durch nachträgliche Anpassung der Parameter lässt sich in vielen Fällen eine recht gute Uebereinstimmung von gemessenen und berechneten Werten erzielen. Einzelne Messpunkte jedoch weisen noch immer beträchtliche Abweichungen auf. Insgesamt scheint aber die Modellvorstellung von der gaussförmigen Abluftfahne für neutrale Bedingungen brauchbar zu sein. Die hier allzu schwach vertretenen Experimente bei labilen Bedingungen lassen sich jedoch mit dieser Methode wesentlich schlechter simulieren.

Ingesamt haben sich vor allem die folgenden Schwierigkeiten gezeigt:
Die Ausbreitungsrichtung lässt sich schwer bestimmen. Die Modellvorstellung der symmetrischen Abluftfahne in einem homogenen Windfeld ist eine sehr
starke Vereinfachung. Die Ausbreitung ist oft nicht geradlinig und höhenabhängige Winde können die Fahne aufteilen. Durch eine Verbesserung der Ballontechnik könnte die kurzfristige Bestimmung der Ausbreitungsrichtung genauer werden. Für eine Langzeitbeobachtung jedoch scheint die Erfassung des
Windfeldes mit mehreren Messtationen notwendig zu sein. Hier wurde lediglich
gezeigt, dass die Verwendung von Winddaten vom Abluftkamin für die Berechnung von Kurzzeitausbreitungsfaktoren zu grossen Fehlern führt. Es mag sein,
dass sich über längere Zeiten diese Fehler in bestimmten Richtungen ausmitteln.

Die Ausbreitungsparameter, die im Jülich bestimmt wurden, sind für die Umgebung von Mühleberg wegen ihrer wesentlich grösseren Bodenrauhigkeit nicht geeignet. Von den üblichen Parametersystemen sind die Jülicher Werte jedoch noch am ehesten für rauhes Gelände geeignet (siehe Vogt 1974). Für eine zuverlässige Neubestimmung sind lange Messreihen notwendig.

Die Ueberhöhung wurde im Allgemeinen unterschätzt. Eine systematische Korrektur ist aufgrund der vorliegenden Daten noch kaum möglich. Die komplizierte Windstruktur dürfte überdies die Anwendung theoretischer Abschätzungen erschweren.

Falls es überhaupt gelingen kann, mit dem Gauss'schen Fahnenmodell für die nähere Umgebung des KKM brauchbare Mittelwerte und Prognosen für die Ausbreitung von inerten gasförmigen Emissionen anzugeben, ist also ein beträchtlicher zusätzlicher Aufwand notwendig. Bei gleichem messtechnischem Aufwand liefert die PICK-Methode wahrscheinlich wesentlich bessere Resultate, da sie die mühsam gewonnene Information nicht durch grobe Interpolationen entwertet.

wendbarkeit bei der Modellentwicklung sind jedoch Windmessungen an mehreren Orten unerlässlich. Mit Experimenten wie bisher kann die Grössenordnung der zu erwartenden Verdünnungsfaktoren und die Kompliziertheit des Windfeldes nur grob abgeschätzt werden. Angesichts des beachtlichen Arbeitsaufwandes muss deshalb bezweifelt werden, dass eine Weiterführung in der bisherigen Weise auf lange Sicht sinnvoll ist.

8.3. Erforderliche meteorologische Daten

Die meteorologische Instrumentation beim KKM ist für unsere Zwecke leider unzulänglich. Kontinuierlich werden lediglich Windrichtung und Windgeschwindigkeit am Abluftkamin in 60 und 120 m Höhe gemessen. Regelmässige Bestimmungen der Diffusionskategorie werden nicht vorgenommen. Regelmässige Meldungen von der Wetterstation in Payerne über Höhenwinde und Inversionen gibt es im KKM auch nicht. Die Ergebnisse der meteorologischen Kampagne im Rahmen des Genehmigungsverfahrens sind für eine detailliertere Untersuchung des Ausbreitungsverhaltens ebenfalls ungenügend (siehe Abschnitt 4.); durch eine ausführlichere Auswertung der damals gewonnenen Messresultate liessen sich jedoch wahrscheinlich noch wertvolle Aussagen gewinnen.

Für eine Anwendung des PICK-Modells ist vor allem eine genauere Bestimmung des Windfeldes notwendig. Ausserdem ist eine zuverlässigere und datailliertere Bestimmung der Diffusionskategorien wünschenswert, wenn möglich mit Hilfe von Turbulenz- oder Temperaturgradientenmessungen. Werden diese Messungen an mehreren Orten durchgeführt, stellt dies eine wesentliche Hilfe bei der Ermittlung der ortsabhängigen Diffusionskoeffizienten dar. Die Messergebnisse der Wetterstation Payerne sollten ebenfalls berücksichtigt werden. Zur Berchnung der Langzeitausbreitungsfunktionen sind ausserdem mehrjährige Statistiken all dieser Messwerte erforderlich. Das macht relativ aufwendige, kontinuierlich arbeitende Messinstrumente notwendig.

Deshalb schlage ich vor, auf Stromleitungsmasten in der Umgebung des Kernkraftwerks fünf bis zehn Windmessstationen mit kontinuierlicher Registration zu installieren. Wenn möglich sollten drei von diesen Stationen Vektorwindfahnen besitzen, um Turbulenzmessungen zu ermöglichen. An die Stelle der Turbulenzmessung könnte unter Umständen auch die Messung von Temperaturgradienten treten, was jedoch nur bei sehr hohen Masten sinnvoll wäre. Diese Installationen könnten eine sinnvolle Grundausrüstung für die Entwicklung eines geeigneten PICK-Modelles darstellen.

8.4. Ausblick

XPIC scheint das einzige Programm zu sein, das für uns zur Zeit in Frage kommt. Zunächst sollte geprüft werden, ob es möglich ist, dieses Programm zu übernehmen, auf welchem Computer es gerechnet werden kann und ob eine beschränkte Zusammenarbeit mit der Gruppe von Hannover möglich ist. Die Erfordernisse des Windfeldprogrammes sollten genauer untersucht und daraus ein Konzept für das Messnetz entwickelt werden. Die Kosten müssen abgeschätzt, und schliesslich muss endgültig über die Fortführung des Projekts entschieden werden.

Langfristig wäre die Entwicklung eines on-line Datensystems denkbar(siehe Süss und Thomas 1974), das in Verbindung mit dem Rechenmodell imstande ist, aus den momentanen meteorologischen Daten und den Abgaberaten die Isodosislinien innert kürzester Zeit zu berechnen, was die Beurteilung von Störfällen im Ernstfall wesentlich erleichtern würde und als Gemeinschaftsprojekt für mehrere Kernkraftwerke mit Hilfe eines zentralen Rechners realisierbar wäre.

LITERATURVERZEICHNIS

AEC , 1973

"The potential radiological implications of nuclear facilities in the upper Mississippi River Basin in the year 2000", USAEC, Div. of Reactor Dev. and Technology, Wash-1209, (1973).

BARRY, P.J., 1971

"Use of Ar-41 to study the dispersion of stack effluents", Nuclear Techniques in Environmental Pollution (Proc. Symp. Salzburg, 1970), IAEA, Vienna, 1971

BATCHELOR, G.K., 1949

"Diffusion in a field of homogeneous turbulence, I. Eulerian Analysis", Australian J.Sci.Res., 2:437-450. Nach Slade, 1968

BERLYAND, M.E., 1972

"Atmospheric diffusion investigations in the USSR, Appendix, Dispersion and Forecasting of Air Pollution", Tech. Note No 121, WMO No. 319 (1972)56. Nach Vogt, 1974

BRUN,J., HUGON,J., leQUINIO,R., 1974

"Influence de la durée d'exposition dur l'évaluation des coefficients de diffusion atmosphérique", Physical Behaviour of Radioactive Contaminants in the Atmosphere (Proc. Symp. Vienna 1973), IAEA, Vienna, 1974.

CALDER, K.L., 1949
"Eddy diffusion and evaporation in flow over aerodynamically smooth and rough surfaces", Quar. J. Mech. Appl. Math., 2: 153-176.
Nach Slade, 1968

CLARKE, R.H., 1973 Health Phys. 25 (1973) 267. Nach Macdonald et al., 1974

COATES,R.L., HORTON,N.R., 1966
"RSAC - a radiological safety analysis computer program". Rep.IDO-17151

COOPER, R.E. , 1969

"WRED - a siting code to estimate dose probability distribution from measured meteorology data", Health Phys. <u>16</u>(1969)735.

CRANDALL et al., 1973

"An investigation on scavenging of radioactivity from nuclear debris clouds, research in progress". Lawrence Livermore Lab. Univ. of Calif. Rep. UCRL-51328 (1973).

CURRIE, L.A. , 1968

"Limits for qualitative detection and quantitative determination", Anal. Chem. 40(1968)586.

DAVIDSON, B., HERBACH, L., 1962

"The diffusion of polydisperse particulate couds". US Army Chemical Corps, Department of Defense. Nach Slade, 1968

DAVIES, D.R., 1954

"A note on the two-dimensional equation of diffusion in the atmosphere" Quart. J. Roy. Meteorol. Soc. 80(354): 429-434. Nach Slade, 1968.

DEACON, E.L. , 1949

"Vertical diffusion in the lowest layers of the atmosphere", Quart. J. Roy. Meteorol. Soc., 75(324):89-103. Nach Slade, 1968.

FRENKIEL, F.N., 1953

"Turbulent diffusion: mean concentration distribution in a flow field of homogeneous turbulence", Advan. Appl. Mech., 3: 61 - 107. Nach Slade, 1968.

FRITTELLI,L., 197

"Application of system analysis methodology to the determination of the limiting radiological capacity of the area surrounding a nuclear facility", IAEA-SM-180/60.

GAGLIONE, P., GANDINO, C., MARKOVINA, A., 1969

"Valutazione dei rischi alla popolzione da scarichi radioattivi nell'atmosfera der C.C.R. di Ispra sulla base delle rivelazioni meteorologiche locali", Giornale di fisica sanitaria e protezione contro le radiazioni, 13/3 (1969) 204-214.

GEE, J.M., DAVIES, D.R., 1963

"A note on horizontal dispersion from an instantaneous ground source", Quart.J.Roy.Meteorol.Soc., 89 (382):542-545. Nach Slade, 1968.

GIFFORD, F.A., Jr., 1960

"Use of routine meteorological observations for estimating atmospheric dispersion", Nucl.Saf.2 (1960)15. Nach Vogt, 1974.

GODSON, W.L., 1958

"The diffusion of particulate matter from an elevated source", Arch. Meteorol Geophys. Bioklimatol., 10:305-327.

GUGELMANN, A., 1973

"Simulation kontinuierlicher Systeme", Physikalisches Institut der Universität Bern, 1973.

GUTSCHE, A., PFEIFFER, H., SEIFERT, G., 1966

"Zur meteorologischen Begutachtung der Standorte von Kernkraftwerken mit einem Einblick in Grundlagen und Ergebnisse der Ausbreitungsrechnung", Mitt. des deutschen Wetterdienstes Nr. 39 (Bd.5), Offenbach 1966

HAY, J.S., PASQUILL, F., 1959

"Diffusion from a continuous source in relation to the spectrum and scale of turbulence", Advances in Geophysics (Vol.6 of Atmospheric Diffusion and Air Pollution) edited by F.N.Frenkiel, P.A.Sheppard, Academic Press, New York, 1959.

IAEA, 1968

"Application of meteorology to safety at nuclear plants", Safety Series No.29 - STI/PUB/211 , Vienna 1968

ISM - INSTITUT SUISSE DE METEOROLOGIE , 1967

"Centrale nucléaire de Mühleberg, Chapitre meteorologique du rapport de sécurité, Rapport final" Service de la protection de l'air, Payerne 1967

ISM , 1976

"Note sur le programme de calcul DIFPCT", Service de la protection de l'air, Payerne, 1976

KAHN, B. et al. , 1970

"Radiological surveillance studies at a boiling water nuclear power reactor", BRH/DER 70-1, U.S. Dept. of Health, Education and Welfare, 1970.

KLUG, W. 1969

"Ein Verfahren zur Bestimmung der Ausbreitungsbedingungen aus synoptischen Beobachtungen", Staub, J. 29 (1969) 143. Nach Vogt, 1974

- KOENIG,L.A., NESTER,K., SCHUETTELKOPF,H., WINTER,M., 1974

 "Experiments conducted at Karlsruhe Nuclear Research Centre to determine diffusion in the atmosphere by means of various tracers",Physical Behaviour of Racioactive Contaminants in the Atmosphere (Proc. Symp.Vienna 1973) IAEA, Vienna 1974.
- LANGE,R., 1973

 "ADPIC a tree-dimensional computer code for the study of pollutant dispersal and deposition under complex conditions", Lawrence Livermore Lab., Rep. URCL-51462, (1973).
- LANGE,R., KNOX,J.B., 1974

 "Adaptation of a three-dimensional atmospheric transport diffusion model to rainout assessments", Lawrence Livermore Lab., Rep. URCL-75731 (1974).
- LEDERER, C.M., 1968
 "Table of Isotopes", 6th Ed. 1968, Wiley & Sons.
- "On eddy diffusion in shear zones", Geophysical Research Papers, No.19,
 Report AFCRC-TR-53-9, pp.437-445, Air Force Cambridge Research Center.
 Nach Slade, 1968.
- MACDONALD, H.F., DARLEY, P.J., CLARKE, R.H., 1974

 "Recent developments in prediction of environmental consequences of radioactive releases from nuclear power reactors", Physical Behaviour of Radioactive Contaminants in the Atmosphere (Proc. Symp. Vienna 1973) IAEA, Vienna 1974.
- MACHTA,L., 1958

 "Global scale dispersion by the atmosphere", Proceedings of the second UN International Conference on the Peaceful uses of Atomic Energy, Geneva 1958, Vol 18, pp.519-523, U.N., N.Y.,1958, Nach Slade, 1968.
- MARTIN,J.A.,Jr., NELSON,C.B., 1974

 "Calculations of dose and population dose in the general environment due to boiling-water nuclear power reactor radionuclide emissions in the USA in 1971", Physical Behaviour of Radioactive Contaminants in the Atmosphere (Proc. Symp. Vienna 1973),IAEA, Vienna, 1974.
- MARTIN,J.A.,Jr., NELSON,C.B., CUNY,P.A., 1974
 "AIREM-Program Manual", U.S. Environmental Protection Agency
 EPA-520/1-74-004.
- MAY,M.J., STUART,I.F., 1968

 "Comparison of calculated and measured long term gamma doses from a stack effluent of radioactive gases", Environmental Surveillance in the Vicinity of Nuclear Facilities. Proc. of Augusta Symp., Jan. 24-26,1968.
- MacCRACKEN,M.C. et al. , 1972

 "Initial application af a multibox air pollution model to the San Francisco Bay area", Lawrence Livermore Lab., California University, May 1972
- McELROY,J.L., 1969
 "A comparative study of urban and rural dispersion", J. Appl. Meteorol. 8 (1969) 19. Nach Vogt, 1968.
- MEADE,P.J. , 1959
 "The effects of meteorological factors on the dispersion of airborne
 material", Atti al Congresso Scientifico, Sezione Nucleare 2, Part 2
 (1959)107. Nach Vogt, 1974.

OESCHGER, H. et al., 1974

"A box diffusion model to study the carbon dioxide exchange in nature", Tellus XXVII (1975),2.

PASQUILL, F., 1961

"The estimation of dispersion of windborne material", Meteorol. Mag. 90 (1961) 33. Nach Vogt, 1974.

PASQUILL, F., 1962

"Atmospheric Diffusion", Van Nostrand, London 1962

POLSTER,G., 1969

"Erfahrungen mit Strahlungs-, Temperaturgradient- und Windmessungen als Bestimmungsgrössen der Diffusionskategorien", Meteorol. Rundschau 22 (1969) 170.

REUTER, H., 1970

"Die Ausbreitungsbedingungen von Luftverunreinigungen in Abhängigkeit von meteorologischen Parametern", Arch. Met. Gephys. Bioklimat., Ser. A.19, 173-186 (1970).

ROBERTS, O.F.T., 1923

"The theoretical scattering of smoke in a turbulent atmosphere", Proc. Roy. Soc. (London) 104A, 640 (1923). Nach Vogt, 1970.

ROUNDS, W., Jr., 1955

"Solutions of the two-dimensional diffusion equations", Am Geophys. Union Trans., 36: 395-405. Nach Slade, 1968.

SAFFMAN, P.G., 1962

"The effect of wind shear on horizontal spread form instantaneous ground source", Quart. J.Roy. Meteorol. Soc., 88(378):382-393. Nach Slade, 1968.

SCHRIBER,G., 1977

persönliche Mitteilung

SCHRIBER,G., 1978

Dissertation am Physikalischen Institut der Universität Bern, in Vorbereitung

SCHULTZ, H., VOELZ, E., WUENEKE, C.-D., 1975

"Advantages of numerical atmospheric dispersion calculations for estimating dispersal and combination effects of stack releases from the nuclear industry", Combined effects of radioactive, chemical and thermal releases, IAEA, Vienna, 1975

SCHULTZ, H., VOELZ, E., WUENEKE, C.-D., 1976

"Erstellung und Erprobung eines neuen Rechneprogramms für die Berechnung der Ausbreitung von Schadstoffen in der Atmosphäre unter instationären Bedingungen in ausgedehnten bebauten Regionen", KFK 2262, Projekt Nukleare Sicherheit, Halbjahresbericht 1975/2, S.436, Karlsruhe 1976.

SINGER, I.A., SMITH, M.E., 1966

"Atmospheric dispersion of Brookhaven National Laboratory", Air and Wat. Poll. Int. J. 10 , 125-135 (1966) . Nach Vogt, 1970.

SKLAREW, R.C., FABRICK, A.J., PRAGER, J.E., 1971

"A particle-in-cell method for numerical solution of the atmospheric diffusion equation and application to air pollution problems", System, Science and Software, 3SR-844(1971), NTIS.

- SLADE, D.H., Editor, 1968
 - "Meteorology and Atomic Energy 1968", USAEC, Division of technical information, July 1968.
- SMITH, F.B. , 1957

"The diffusion of smoke from a continuous elevated point-source into a turbulent atmosphere", J. Fluid. Mech., 2 (Part 1): 49-76.

SOLDAT, J.K., BAKER, D.A., CORLEY, J.P., 1973

"Applications of a general computational model for composite environmental radiation doses", IAEA/SM - 172/82.

STAMPFLI,R., 1976

"Separierung von Rohargon aus Luftproben mit metallischem Calcium", Physikalisches Institut der Universität Bern, 1976

SUESS, F., THOMAS, P., 1974

"On-line Datenerfassung und Datenaufbereitung in einer Koppelung meteorologischer Turm - PDP-8/1 - CALAS-System", KFK 1934, Gesellschaft für Kernforschung mbH., Karlsruhe, 1974.

- STRENGE, D.L., HENDRICKSON, M.H., WATSON, E.C., 1971

 "RACER a computer program for calculating potential external dose from airborne fission products following postulated reactor accidents",

 Rep. BNWL B 69 (1971).
- SUTTON, O.G., 1953
 "Micrometeorology", Mc Graw-Hill, N.Y., 1953. Nach Slade, 1968.
- TAYLOR,G.I. , 1915
 "Eddy motion in the atmosphere", Philos. Trans. R. Soc. London,
 Ser A 215 (1915) 1. Nach Vogt, 1974.
- TAYLOR, G.I., 1920

"Diffusion by continuous movements", Proc. London Math. Soc. 20 (1920) 196. Nach Vogt, 1974.

TURNER, D.B. , 1971

"Workbook of atmospheric dispersion estimates", Office of Air Programs, Publication No. AP-26, USEPA, July 1971.

UHLIG,S., 1965

"Bestimmung der Stabilitätsgrade der Luft an Hand von Wettermeldungen", Mitt. des Deutschen Wetterdienstes Nr. 35 Bd.5, Offenbach 1965.

- VAN DER HOVEN,I., GAMMILL,W.P., 1969
 "A survey of programs for radiological dose computation",
 Nucl. Saf. 10 (1969) 513.
- VAN DER HOVEN, I. et al., 1974

"Recent analytical and experimental efforts on single-source effluent dispersion to distances of 100 km", Physical Behaviour of Radioactive Contaminants in the Atmosphere (Proc. Symp. Vienna 1973), IAEA, Vienna, 1974.

VAN DER HOVEN,I., 1976

"A survey of field measurements of atmospheric diffusion under low-wind-speed inversion conditions", Nucl. Saf., 17 (1976) 223.

VOGT, K.J., 1970

"Umweltkontamination und Strahlenbelastung durch radioaktive Abluft aus kerntechnischen Anlagen", Jül-637-ST, Kernforschungsanlage Jülich, 1970.

- VOGT,K.J. et al. , 1971
 - "Jahresbericht Juli 1970 Juni 1971, Ausbreitung und Ablagerung", Jül-807-ST, KFA Jülich, 1971.
- VOGT, K.J. et al., 1973

"Untersuchungen zur Ausbreitung von Abluftfahnen in der Atmosphäre, Ergebnisbericht Juli 1971 - Dez.1972 (1.Teil)", Jül-998-ST, KFA Jülich, 1973.

- VOGT, K.J. et al., 1974/1
 - "Arbeitsbericht 1973 der Zentralabteilung Strahlenschutz, Kap. 5: Ausbreitung von Schadstoffen in der Atmosphäre von Schadstoffen in der Atmosphäre und Strahlenbelastung", Sonderdruck aus Jül-1101-ST, KFA Jülich , 1974.
- VOGT,K.J. et al., 1974/2
 "Untersuchungen zur atmosphärischen Ausbreitung und Ablagerung von Schadstoffen. Ergebnisbericht Juli 1973- Juni 1974",
 Jül-1143-ST, KFA Jülich, 1974.
- VOGT,K.J., GEISS,H., 1974

 "Kurzzeit- und Langzeitausbreitungsfaktoren zur Berechnung der Umweltbelastung durch Abluftfahnen", ZST-Bericht Nr. 198, KFA Jülich,
 1974.
- VOGT,K.J., 1974

 "Dispersion of airborne radioactivity released from nuclear installations; population exposure in local and regional environment",

 Physical Behaviour of Radioactive Contaminants in the Atmosphere

 (Proc. Symp. Vienna 1973) IAEA, Vienna, 1974.
- VOELKLE,H., 1976, 1977 persönliche Mitteilung
- WIEST, W. , 1973

"Messung von Argon-Isotopen in Luftproben und Vergleich mit Modellrechnungen", Dissertation, Physikalisches Institut der Universität Bern, 1973.

WINIGER, P., HUBER, O., HALTER, J., 1974

"A system analyses of gamma-ray spectrometra and a realisation of online evaluation for environmental sample control or other purposes", Séminaire sur le contrôle des effluents radioactifs, Karlsruhe 14. - 17. mai 1974.

WINTON, M.L., 1969

"A compilation of computer codes for nuclear accident analysis", Nucl. Saf. 10 (1969) 131.

WIPPERMANN, F., 1974

"Die Ausbreitung radioaktiver Gase im Meso-Scale (20 km - 400 km)", Kommission der Europäischen Gemeinschaften, 1974.

WUENEKE, C.-D., SCHULTZ, H., 1975

"Erstellung und Erprobung eines neuen Rechenprogramms für die Berechnung der Ausbreitung von Schadstoffen in der Atmosphäre unter instationären Bedingungen in ausgedehnten bebauten Regionen", KFK 2195, Kernforschungszentrum Karlsruhe, Projekt Nukleare Sicherheit, 1. Halbjahresbericht 1975, S. 386.

ANHANG A: DIE ENTWICKLUNG DER MESSMETHODE

1. DIE ANFAENGLICHE METHODE

1.1. Anlage und Konzeption von Wiest

Vor mir hatte sich in unserem Labor Herr Dr. Wiest kurze Zeit mit dem Problem der Messung der Xe-Konzentration befasst. Ebenfalls in Anlehnung an Kahn et al. (1970) hatte er die in der untenstehenden Abbildung skizzierte Anlage aufgebaut.

Im Molekularsieb A3 wurde zunächst der Wasserdampf aufgefangen, im Molekularsieb A5 dann das CO2. Beim Durchpumpen von 1 m3 Luft blieben an der Aktivkohle im U-Rohr 40 Liter hängen. Das war zum grossen Teil Sauerstoff, wenig Stickstoff und wohl fast alle Edelgase. Die Molekularsiebe mussten nach je 3 m3 Probe wieder ausgeheizt werden. Die zu messende Probe sollte durch Aufheizen aus der Aktivkohle ausgetrieben werden. Anschliessend wollte man Reste N2 und O2 mit Hilfe von heissem Ca von den Edelgasen trennen und schliesslich die Xe-133- Aktivität in einem Zählrohr oder mit einem Ge-Li-Det messen. Die Verwendung von Zählrohren hätte den Vorteil einer sehr hohen Empfindlichkeit gehabt. Für den Fall, dass Radon-Störungen auftreten sollten, wurde an eine zusätzliche gaschromatographische Reinigung und den Bau einer dafür geeigneten Apparatur gedacht.

Es wurde daran gedacht, zehn solche Anlagen zu bauen, und sie, teilweise von transportablen Stromgeneratoren gespeist, direkt im Feld zur Probennahme zu verwenden.

Anfangs sah es so aus, als ob die Perfektionierung der Methode in kurzer Zeit möglich wäre.

1.2. Erste Arbeiten damit

Zunächst wurden einige Versuche gemacht, die Ausbeute des Verfahrens zu bestimmen. Dazu wurde jeweils ca. 1 m³ Aussenluft oder Laborluft, zu der manchmal noch eine abgemessene Menge Krypton- oder Xenon-Carrier zugegeben wurde, mit dem Luftprobennehmer eingesaugt. Dann wurde das U-Rohr mit der Aktivkohle aufgeheizt und die Probe mit Hilfe von flüssigem Stickstoff in einen mit Aktivkohle gefüllten Druckkolben gesaugt. Anschliessend wurde ein Teil der

Probe in einer Calcium-Anlage gereinigt, das heisst, dort wurden Sauerstoff, Stickstoff und Kohlendioxyd bei ca. 700° an Calcium gebunden (Stampfli, 1976). Da die Kapazität der Calcium-Anlage auf 13 Liter begrenzt war, konnte nie die ganze Probe (40 1) auf einmal verarbeitet werden. Um eine Fraktionierung der Probe zu vermeiden, heizten wir den Kolben vor der Entnahme eines Teils der Probe auf ca. 150° auf, was sich jedoch später als ungenügend erweisen sollte (siehe 1.3.).

Vor und nach der Ca-Reinigung wurden die Proben gaschromatographisch analysiert. Zwei Proben wurden nach der Reinigung ausserdem mit einem Massenspektrometer untersucht. Insgesamt waren die Messungen schlecht reproduzierbar und ergaben, dass sich die Zusammensetzung der Probe vor der Reinigung in der Calcium-Anlage gar nicht wesentlich von der Luftzusammensetzung unterschied: Sauerstoff war gegenüber Stickstoff leicht angereichert, die Konzentration von Krypton war ebenfalls nur etwas gestiegen und insbesondere von einer guten Xenon-Ausbeute konnte nicht die Rede sein (kleiner als 1 %). Der Verdacht, dass ein grosser Teil im Molekularsieb hängengeblieben sein könnte, wurde durch eine Messung der im Molekularsieb eingefangenen Gase widerlegt. So verstärkte sich der Verdacht, dass beim Ausheizen ein grosser Teil des Xenons an der Aktivkohle hängengeblieben war.

1.3. Ausheizexperimente

Bis hierher hatten wir vorläufig angenommen, dass beim Ausheizen der Aktivkohle alle gebundenen Edelgase austreten würden. Einige Informationen von Leuten, die in der Massenspektrometrie mit Xenon und Aktivkohle arbeiteten, liessen das jedoch sehr zweifelhaft erscheinen. So musste mit speziellen Experimenten das Desorptionsverhalten der Edelgase von Aktivkohle untersucht werden. Man wollte vor allem wissen, wie sich die Zusammensetzung der Gasphase über der Aktivkohle beim Ausheizen mit der Zeit ändert, und ob sie sich der Zusammensetzung der anfangs an die Aktivkohle gebundenen Gase nähert.

Es wurden drei Messerien durchgeführt. Dazu wurde jeweils ein mit Aktivkohle gefüllter Stahlkolben ausgeheizt und evakuiert. Dann wurde er mit flüssigem Stickstoff gekühlt und abgemessene Mengen verschiedener Gase wurden eingesaugt. Der verschlossene Kolben wurde aufgeheizt und nach bestimmten Zeitabständen wurden kleine Gasmengen abgezapft und mit einem Massenspektrometer analysiert.

Für die drei Messerien ergab sich damit folgendes Bild:

<u>L 9</u>	t (min)	T (^O C)	[Xe] / [Kr] (%)
5,5 ml Xe	15	100	7,97
ll ml Kr	30	120	9,32
300 ml Ar	60	135	13,69
22500 ml N ₂	248	135	12,64
	426	135	15,26
	660	135	13,31
	sol	.1	50

<u>L 10</u>	t(min)	T (°C)	[xe]/[Kr] (%)
5,5 ml Xe	15	120	5,20
ll ml Kr	30	140	7,12
300 ml Ar	60	155	9,07
	120	160	10,42
	240	160	11,08
	500	160	12,87
	1725	160	13,75
	soll	-	50
L 11			
5,5 ml Xe	15	115	3,30
ll ml Kr	30	135	3,39
900 ml Ar	60	142	3,81
	120	145	5,26
	240	150	6 , 98
	1660	150	7,60
	sol]	L	50

Da die Gasmischungen auf der Aktivkohle hergestellt wurden, konnten sie nicht gleichzeitig als Standard für die Massenspektrometrie dienen. Als Standard wurde daher eine Eichgasmischung verwendet, deren Xe/Ar-Verhältnis wesentlich höher war. Eine solche Extrapolation ist ungenau. Die Absolutwerte der Xenon-konzentrationen sind deshalb mit einem grossen Fehler behaftet. Die Krypton-Werte sind verlässlicher. Der relative Fehler jedoch zwischen den Messungen eines Elementes liegt unter 10 %.

Damit können zwei wesentliche Schlussfolgerungen gezogen werden:

- Noch nach vier Stunden sind die Konzentrationen (ausser vielleicht bei L9) nicht konstant, das heisst, sie entsprechen nicht den wahren Konzentrationen des Gasgemisches.
- Auch das Kr/Xe-Verhältnis ist nach mehreren Stunden noch nicht konstant. Eine Erhöhung des Argon-Drucks erschwert die Desorption von Krypton und besonders von Xenon.

Ursprünglich war geplant, mit mehreren Messungen und genaueren Eichungen den Einfluss von verschiedenen Partialdrucken und Temperaturen genauer zu untersuchen. Um mit der eigentlichen Aufgabe voranzukommen, wurde dieses Vorhaben jedoch fallengelassen, da aus diesen Messungen schon klar geworden war, dass das Ausheizen des Xenon aus Aktivkohle einige Schwierigkeiten mit sich bringt. Ohne vollständiges Auspumpen oder Ausspülen mit einem Trägergas scheint es kaum möglich, den Xenongehalt genau zu bestimmen oder das Xenon quantitativ zu extrahieren.

Deshalb schien es lohnend, trotz aller Bedenken, im Wesentlichen zumächst auf das Prinzip der bei Kahn et al. (1970) beschriebenen Methode zurückzukommen und zunächst diese Variante zu entwickeln. Bei dieser Entscheidung blieben jedoch zwei wesentliche Fragen offen: Ob die Empfindlichkeit für unsere Zwecke genügen würde und ob die Auflösung des Ge-Li-Detektors ausreichen würde, die störenden Linien der Radon-Tochterprodukte, über deren Stärke nichts bekannt war, von der Xenon-Linie zu trennen. Deshalb sollte parallel noch die kompliziertere Variante mit gaschromatographischer Reinigung und empfindlicher Zähl-, rohrtechnologie weiterverfolgt werden.

2. DIE NEUE METHODE

2.1. Das neue Konzept

In "Radiological Surveillance Studies at a Boiling Water Nuclear Power Reactor" (1970) beschreiben Kahn et al. ihre Methode zur Messung der Xe-Konzentration. Sie verwendeten einen Probennehmer, der aus folgenden Elementen besteht:

- 1. Flussmesser
- 2. 90 g Molekularsieb (13 X) in einer Glassäule von 4 cm Durchmesser, um CO₂ und Wasser zu eliminieren.
- 3. Kupferrohrspirale (Durchmesser 1 cm, Länge 80 cm) in einer Kältemischung aus Trockeneis und Azeton zum Kühlen der Luft.
- 4. 210 g Aktivkohle in einem U-Rohr aus Kupfer (Durchmesser 3,2 cm, Länge 66 cm), das ebenfalls in der Kältemischung steht.
- 5. Vakuumpumpe mit einer Pumpleistung von 30 1/min.

Die Probennahme dauerte eine Stunde bei einem Durchfluss von 15 1/min. Bei einer Probenmenge von 1 m3 wurde alles Xenon in der Aktivkohle aufgefangen. Sofort nach der Probennahme wurde die Aktivkohle in ein Plastikgefäss (450 ml) umgefüllt, das dicht verschlossen wurde und einem Druck von mehreren Atmosphären widerstehen konnte. Dieses Gefäss wurde direkt auf einem NaI(T1)-Detektor gemessen.

Im Feld wurden mit dieser Methode nur drei Messungen durchgeführt, dabei wurde versucht, die Probe im Zentrum der Abluftfahne zu nehmen. Die Nachweisgrenze lag bei 100 pCi/m³. Das Problem von Radonstörungen wird nicht erwähnt, wohl weil es bei einer so hohen Nachweisgrenze keine Rolle spielt.

Für unsere Zwecke musste die Empfindlichkeit und Beweglichkeit der Methode wesentlich erhöht werden. Nach unseren Berechnungen durfte die Nachweisgrenze höchstens 10 pCi/m³ betragen, um bei den Abgaberaten des KKM in der näheren Umgebung Kurzzeitausbreitungsfaktoren bestimmen zu können. Zu diesem Zweck sollte unter Umständen das Probenvolumen erhöht werden, vor allem aber wollte man die Zählgeometrie verbessern. Das bedeutete wegen der komplizierteren Geometrie offensichtlich, dass auf ein Druckgefäss verzichtet werden musste. Eine Volumenreduktion der Probe war daher notwendig. Die KUeR in Freiburg baute ein spezielles Messgefäss mit einem Volumen von 3 Litern, das einem Ueberdruck von 1 atü standhalten konnte und den verfügbaren Raum innerhalb der Abschirmung des Ge-Li-Zählers der KUeR ausfüllte. Mit diesem Detektor stand uns ein Gerät mit kleinem Untergrund und guter Auflösung zur Verfügung.

Wesentliche Aenderungen gegenüber dem anfänglichen Konzept von Wiest waren num, dass die Sorption von Xenon bei weniger tiefen Temperaturen durchgeführt wurde (Kühlung mit Trockeneis anstatt flüssigem Stickstoff) und dass die Aktivkohle umgefüllt und direkt auf einem Halbleiterdetektor gemessen werden sollte.

Die wesentlichen Probleme waren nun die Volumenreduktion, die Radonstörungen und die erreichbare Empfindlichkeit.

2.2. Erste Entwicklungen

Zuerst konnte das Problem der Volumenreduktion gelöst werden. Mehrere Versuche führten zu der noch heute verwendeten und im Hauptteil beschriebenen Umfüllmethode. Dabei blieb jedoch zunächst offen, wieviel Xenon bei diesem Verfahren verloren geht.

Als nächstes wurden zwei Versuche im Feld durchgeführt. Die ganze Anlage wurde dazu in der Abluftfahne ca. einen km von KKM entfernt aufgestellt. Die Messung der Aktivkohle auf dem Ge-Li der KUeR in Freiburg ergab einen erstaumlich grossen Xenon-Peak und nur kleine, davon deutlich getrennte Linien

der Radon-Tochterprodukte.

Dies bedeutete, dass die Methode wahrscheinlich empfindlich genug war, und dass die Radon-Störungen kein Problem darstellten. Die erstaunliche Empfindlichkeit erklärte sich plötzlich dadurch, dass die tatsächlichen Abgaberaten des KKM rund fünzig mal höher waren, als in einem früheren Besprechungsprotokoll der KUeR angegeben wurde, auf das ich meine Berechnungen gestützt hatte. Die Entwicklung einer gaschromatographischen Probenreinigung für die Probenmessung in Zählrohren wurde daraufhin aufgegeben.

Um die Apparatur handlicher zu machen, wurden die riesigen Molekularsiebfallen durch das noch jetzt verwendete Glas-U-Rohr mit Molekularsieb 13 X ersetzt. Für eine genauere Bestimmung des Probenvolumens wurde eine Gasuhr eingesetzt. Ausserdem wurden zwei verbesserte Aktivkohlefallen und ein zweites Messgefäss gebaut.

Da die gleichzeitige Probennahme an möglichst vielen Punkten für die Erfassung der Verdünnungsfaktoren notwendig ist (in Jülich werden bis zu 130 Stationen verwendet! (Vogt und Geiss, 1974)), schien die bisherige Form der Probennahme zu schwerfällig und kostspielig. Es musste ein System gefunden werden, mit dem 1 m³ Luft innerhalb von ca. ½ h kontinuierlich eingefangen werden konnte und das unabhängig von einem Stromanschluss war. Als Luftbehälter wurden zunächst Wetterballone aus Kautschuk verwendet, zum Aufblasen dienten Autostaubsauger, die von Autobatterien gespiesen wurden.

In der Zwischenzeit wurden ausserdem die Ausheizanlage und die Abfüllanlage für Eichgas gebaut. Xe-133 für Eichungs- und Ausbeutemessungen wurde im Nuklearmedizinischen Institut bezogen.

2.3. Die erste Messkampagne

Am 23. und 29.7. wurden erste Probenserien in der Umgebung des KKM genommen. Am 23. und 29.7. wurden in Zusammenarbeit mit KUeR, MZA Payerne und ASK Würenlingen erste Probenserien in der Umgebung des Kernkraftwerkes Mühleberg genommen. Unter der Abluftfahne wurden innerhalb eines Winkels von 60 bis 90 Grad mehrere Proben genommen. Die Resultate findet man in Anhang C.72. Die Abluftfahne war deutlich nachweisbar und man konnte sogar deutlich eine gaussförmige Verteilung erkennen. Da die Methode jedoch noch nicht geeicht war, konnten keine Rückschlüsse auf momentane Verdünnungsfaktoren gezogen werden. Später stellte sich aber heraus, dass bei der Probenlagerung in den Wetterballonen (bis zu neun Tagen) die Xenonkonzentration sinkt (siehe 2.5.). An zwei Ballonen wurde eine dadurch bedingte Halbwertszeit von 3,5 Tagen gemessen. Korrigiert man die gemessenen Werte um die so geschätzten Verluste, lässt sich keine gaussförmige Verteilung mehr erkennen. Wahrscheinlich ist der Verlust nicht in allen Ballonen gleich gross und somit nicht mehr rekonstruierbar.

Obwohl auf diese Weise keine brauchbaren Messresultate gewonnen werden konnten, brachte die Kampagne wichtige Erfahrungen in technischer und meteorologischer Hinsicht. Während der Messungen wurde die Windrichtung wesentlich genauer gemessen, als dies mit der Windfahne am Kamin des KKM möglich ist: In regelmässigen Abständen wurden kleine Wetterballons mit der Abluft aus dem Kamin gelassen und mit einem Telemeter verfolgt.

2.4. Erste Ausbeutemessungen und Eichungsversuche

Zwei erste Ausbeutemessungen wurden durchgeführt, indem eine Eichgasprobe direkt in einem Messgefäss in Aktivkohle eingefroren wurde. Die Zwillings-probe wurde jeweils in einem Ballon mit Luft gemischt und anschliessend normal aufgearbeitet. Man erhielt für die Ausbeuten die Werte 94,5 und 93,7 %.

Auch die Messung einer anderen normal aufbereiteten Probe, deren Xenongehalt aus der abgemessenen Eichgasmenge berechnet wurde, weil die Zwillingsprobe nicht direkt gemessen wurde, ergab eine Ausbeute von 94,5 %. Die Xenonausbeute des Verfahrens lag also nahe bei hundert Prozent, was hoffen liess, dass auch die Reproduzierbarkeit gut sein würde.

Bei den alten Messgefässen wurden nur zwei brauchbare Messungen zur Eichung der Zählgeometrie durchgeführt. Sie ergaben für das Verhältnis der Zählausbeuten Messgefäss/Glas Werte von 1,39 und 1,40 (siehe Anhang C 6.1.).

2.5. Entwicklung der Probennahmestationen

Zunächst wurden die Wetterballone getestet. Von zwei Zwillings-Eichgasproben wurde eine direkt in ein Messgefäss eingefroren und gemessen. Die andere wurde in einen Wetterballon geblasen, mit ca. einem m³ Laborluft gemischt und so sieben Tage lang gelagert. Die Probenmenge im Ballon nahm während dieser Zeit nicht wesentlich ab, aber die darin enthaltene (zerfallskorrigierte) Xenonmenge betrug nach sieben Tagen bei den beiden durchgeführten Messungen nur 19,7 bzw. 21,3 % des ursprünglich eingegebenen Xenons (siehe C 1.3.) Damit war klar, dass die Wetterballone für unsere Zwecke unbrauchbar waren. Der Mechanismus des Xenon-Verlustes wurde nicht näher untersucht. Interessant in diesem Zusammenhang ist, dass Prof. Sittkus in Freiburg (Breisgau) langsame Diffusionsvorgänge von Krypton durch Kautschuk beobachtet hat, es scheint möglich, dass hier beim Xenon ein ähnlicher Vorgang eine Rolle gespielt hat.

Es wurden num verschiedene Lagerungsmöglichkeiten für die Proben untersucht. Die Lagerung in Druckflaschen schien zu aufwendig. Handelsübliche Polyäthylensäcke sind nicht luftdicht. PVC-Luftfolie schien das einzige leichterhältliche, geeignete Behältermaterial zu sein. Deshalb wurde zunächst ein handelsüblicher Wasserball aus diesem Material getestet. Die Ergebnisse der beiden Messungen (100 % Ausbeute nach 7 Tagen und 64 % Ausbeute nach 15 Tagen Lagerung) schienen einen Versuch mit einem speziell angefertigten Luftbehälter aus diesem Material zu rechtfertigen. Die Lagerungsversuche mit diesem ersten Luftzelt waren dann auch erfolgreich (siehe Seite 16 und Anhang C 1.3.).

Inzwischen war beschlossen worden, die Zahl der Probennahmestationen zu erhöhen und die Probennahme zu automatisieren (siehe Anhang B).

Probleme ergaben sich beim Bestreben, die Probennahmezeit auf mindestens eine halbe zu verlängern. Nach erfolglosen Versuchen mit verschiedenen regulierbaren Düsenkonstruktionen musste schliesslich ein neuer Pumpentyp verwendet werden (siehe Anhang B), dessen Leistung mit einem Vorwiderstand reguliert werden kann. Am Anfang hat sich die Pumpe sehr bewährt (siehe C l.l.), im Routinebetrieb jedoch nahm dann die Leistung langsam ab (Mitteilung von Herrn Schriber, BKW). Andere Pumpen dieser Art konnten im Handel jedoch nicht gefunden werden.

2.6. Entwicklung neuer Messgefässe

Auf die Entwicklung einer besseren Messgefässkonstruktion wurde einige Mühe verwendet, da man sich davon folgende Vorteile versprach:

- Eine günstigere Zählgeometrie und damit eine grössere Empfindlichkeit der Messmethode
- Eine besser reproduzierbare Zählgeometrie und damit eine bessere Reproduzierbarkeit der Resultate
- Eine einfachere Handhabung
- Eine billigere und weniger anfällige Konstruktion.

In Garigliano, wo man ebenfalls an der bei Kahn et al. (1970) beschriebenen Methode arbeitete, bis man sie aufgab, weil sie zu schwerfällig schien (auch dort wollte man die Adsorption an Aktivkohle direkt im Feld durchführen), wurden als Messgefässe einfach Polyäthylenbehälter verwendet. Diese waren natürlich nicht dicht, aber man hatte mit ihnen angeblich gleich gute Ergebnisse erzielt wie anfangs mit unter Druck stehenden dichten Glasgefässen (Mitteilung von Herrn Schriber). So versuchten wir es auch zunächst mit einem flachen Polyäthylenbehälter, der einen Inhalt von einem Liter hatte. In den ersten vier Versuchen wurde der Behälter nach dem Einfüllen der kalten Aktivkohle verschlossen und mehr oder weniger langsam aufgetaut (Dauer des Auftauens bis zu acht Stunden), dann wurde er nach Freiburg geschickt und dort gemessen. Mehrmalige Messungen im Abstand von einigen Tagen ergaben erstaunlich konstante, aber doch deutlich abfallende Werte (siehe C 6.2.). Beim fünften Versuch wurde das Plastik-Messgefäss gut gekühlt und isoliert, so nach Freiburg gebracht und in einer speziellen Isolierwanne mit Trockeneis auf den Zähler gestellt. Periodische Messungen ergaben anfangs einen starken Abfall der Aktivität, der dann zurückging und nach einigen Tagen das bei den anderen Proben beobachtete Niveau erreichte. Am Anfang lag die Zählausbeute bei 60 % der Zählausbeute der Messgefässe, nach einigen Tagen lag sie bei ca. 40 % (siehe C 6.2.).

Diese Polyäthylenmessgefässe schienen also für umsere Zwecke nicht brauchbar. Dass sie in Garigliano dennoch verwendet wurden, liegt wohl daran, dass man dort keine so grosse Genauigkeit verlangte und sich mit der groben Reproduzierbarkeit der Messwerte einige Tage nach dem Auftauen begnügte.

Um den Einfluss der Messgeometrie auf die Zählausbeute besser abzuschätzen, wurden noch zwei Versuche mit anderen Plastikgefässen gemacht (siehe C 6.2.). Die KUeR besitzt spezielle Plastikgefässe, deren Geometrie bei einem Probenvolumen von einem Liter für den Ge-Li optimal ist. Wie in den vorangehenden Versuchen wurden diese Gefässe nach dem Umfüllen der Aktivkohle möglichst gut verschlossen umd langsam aufgetaut. Noch einige Tage nach dem Auftauen lag die Zählausbeute über derjenigen der Alu-Messgefässe. Nimmt man einen ähnlichen Aktivitätsabfall während des Auftauens wie bei den anderen Plastikgefässen an, so ergibt sich für diese Geometrie eine Zählausbeute, die 1,6 mal besser ist als diejenige der Alu-Messgefässe. Das heisst, dass sich durch Verbessern der Geometrie eine wesentliche Erhöhung der Empfindlichkeit erreichen lässt.

Da Plastikgefässe nicht geeignet waren, kehrten wir zum Konzept der Metall-Druckgefässe zurück. Um zu prüfen, ob ohne Kenonverlust das Probenvolumen noch weiter reduziert werden könnte, wurde mit den bisherigen Messgefässen die Ausbeute bei längerem Absaugen getestet. Bei einer Absaugdauer von 90 sec betrug die Ausbeute immer noch 93 %. Daraufhin wurden kleinere Alu-Messgefässe konstruiert, man glaubte jedoch trotzdem, das Volumen nicht unter 1500 ml senken zu können. Eine erste Konstruktion, deren unterer Teil aus einem Stück gedrückt war, hielt leider auch einem schwachen Ueberdruck von 1,3 atm nicht stand. So mussten die Messgefässe doch aus Rohren und Blechen geschweisst werden. Die heutige Version (siehe B 4) ist leicht zu handhaben, die Messgeometrie jedoch ist nicht besonders gut, aber leicht reproduzierbar. Durch weiteres Verkleinern der Volumen und eine kompliziertere Konstruktion (konisch oder T-förmig statt zylindrisch) liesse sich die Empfindlichkeit wahrscheinlich noch merklich erhöhen.

ANHANG B:

TECHNISCHE ANGABEN DER ENDE 1976 VERWENDETEN APPARATUREN

1. FELDAUSRUESTUNG

Yuasa B 64 - 12 (Walker & Cie AG , Bern) Bleiakku:

Kapazität 15 Ah , Laden: 10h mit 1,4 A , max. Ladestrom 2,1 A

Ladegerät:

HEKO Batterielader 12/15 T (Walker & Cie AG , Bern)

6/12 V , 15 A , Timer 24 h.

Schaltuhr:

Sangamo Weston Zeitschalter Type S 554 25 E

(Otto Fischer AG Zürich).

Schaltstrom 20 A , mechanisches Uhrwerk, Gangreserve 70 h,

von Hand oder elektrisch (220 V) aufziehbar.

Zweimal Ein und Aus in 24 Stunden.

Luftpumpe:

Speedflo air pump (Hersteller: MAP Ltd., England; Ver-

kauf: Christen & Co AG, Bern)

12 V , 10 A , 0,4 m /min bei 0,1 atü.

Vorwiderstand:

WF 30-175 $3,1\Omega$ 6,2 A

mit Abgriff und Befestigungswinkel

(Egaton AG, Thörishaus (BE))

Schlauch:

PVC - Kunststoffschlauch je 2 m

Art. A 911 $10 \times 2,5 \text{ mm Wand}$

(Wachendorf und Cie AG, Basel)

Luftzelt:

Spezialanfertigung aus PVC-Luftfolie 0,40 mm. Volumen max.

, Grösse : 150 x 130 x 65 cm.

Sicherheitsventile vor dem Einschweissen selber präpariert: Verbindung Ventildeckel-Ventilrohr durch Einschneiden auf ca 3mm Breite verkleinert. Notwendig, da sonst Strömungswi-

derstand zu gross. (Ever-Plast AG, Rümikon)

2. AUSHEIZAPPARATUR

Schema siehe Seite

Vakuumpumpe:

Edwards ED 100

Oefen:

Erreichen die gewünschte Temperatur (400°C) mit einer Spannung von 170 V. (Gebaut am Physikalischen Institut).

Spannungsregler: Phasenanschnittgerät, 3 x 1000 W , Spannungen einzeln regu-

lierbar (gebaut im Physikalischen Institut)

Aktivkohlekühlfallen: siehe Skizze auf der nächsten Seite.

gebaut im Physikalischen Institut und der Werkstatt des KKM.

70

3. AUFBEREITUNGSAPPARATUR

Schema siehe Seite

Stahlrohrgestell: Abmessungen: 50 \times 50 \times 50 cm

Glas-U-Rohr: Länge 300 mm Durchmesser 30 mm

besitzt auf de einen Seite einen Schliff der ein müheloses Auswechseln des Molekularsiebes erlaubt. An beiden Enden des U-Rohres ist ein Glashahn mit der Nennweite 4 mm

angebracht.(angefertigt von R.C. Kuhn, Bern/Fribourg)

Durchflussmesser: Typ 1100 V-A-A-150 ausgerüstet mit Messrohr 6A-150 B6S,

geeicht für 6 bis 50 1/min Luft.

Anschlüsse Nylon 12 mit Schlauchnippel 10mm (WISAG, Zürich)

Kompressor: Kompressort Sprait Nr. 602 , (Christen & Co AG, Bern)

Der gekaufte Kompressor besitztkeinen Ansaugstutzen, dieser musste erst noch angefertigt und eingebaut werden.

Kühlschlange: Kupferrohr, Länge 8,3 m , Innendurchmesser 8 mm

Durchmesser der Spirale ca 140 mm, Höhe ca 220 mm.

Aktivkohlekühlfalle: siehe B 2

Dewargefäss: Inhalt ca 7 l , Innendurchmesser 155 mm , Gesamttiefe ca.

400 mm.

Gasuhr: Zweirohr-Gaszähler L O / S 36 Q 0 - 6 m³/h

Stutzenabstand 210mm, mit Verschraubungen 3/4" AG, umgeeicht (GWF Luzern), Messfehler <+ 2% zwischen 60 1/h und 6 m $^3/h$.

4. MESSGEFAESSE

Siehe Zeichnung auf den nächsten Seiten.

Ausgelegt für einen Druck von 1 atü.

Ander Olive ist ein kurzer Schlauch befestigt (ca $10~\rm{cm}$), der durch einen Hahn (Hoke $3252~\rm{M4B}$, Matkemi AG, Therwil) mit Gewindeanschluss abgeschlossen wird.

	kzahi inne,t	Gegenstand	Pos.	Werkstoff		ew ew	В	emerkung	}		
1	11	Anderungen:						Gruppe: 469 300 H			
							Ersetzt durc Ersatz für: .				
		Aktivkohle-Messgefäss Ge-Li-Dedektor				tab	Gezeichnet Geprüft Gesehen	23, 4, 76	Pirede		
		Eidg. Institut für Reaktorforschung Würenlingen AG					-162	995	7		

5. ABFUELLANLAGE FUER EICHGAS

Zubehör

Volumina :

$$V_{M} = V_{M_{O}}$$
 für $\Delta p = 0$
 $V_{O} = 100,7 \text{ ml} + 2 \%$
 $V_{O} + V_{M_{O}} = 151,3 \text{ ml} + 1,2 \%$
 $V_{O} + V_{M} = (V_{O} + V_{M_{O}}) \cdot (1 + \alpha p)$
 $\alpha = 1,3 \cdot 10^{-4} \text{ torr}^{-1} + 12 \%$

Verbindungsteil:

$$v_{K} + v_{V1} + v_{6V} + v_{7V} = 73 \text{ ml} \pm 5\%$$

Vorratsbehälter:

$$V_4 = 1100 \text{ ml} + 2\%$$
 $V_5 = 1020 \text{ ml} + 1\%$

Eichvolumina:

$$V_6 = 26,82 \text{ ml} + 0,1 \%$$
 $V_7 = 27,28 \text{ ml} + 0,1\%$

Glasfläschchen:

$$V_G = 116,5 \text{ ml} + 0,2 \%$$
 (Mittelwert von 5 Fläschchen)

6. GEBRAUCHSANWEISUNG

6.1. Probennahme im Feld

Vorbereitung

Batterien laden, bis zu zehn Batterien gleichzeitig an das Ladegerät anschliessen. Der Ladestrom für jede einzelne Batterie darf 2.1 A nur kurzfristig übersteigen, Dauerladestrom ca. 1,6 A. Darauf ist insbesondere beim gleichzeitigen Laden mehrerer Batterien zu achten. Die gleichzeitig zu ladenden Batterien müssen also alle möglichst gleich stark entladen sein. Der Punkt auf der Ampèremeterskala des Ladegerätes entspricht dem maximal zulässigen Ladestrom für eine Batterie. Mit dem Schalter 'Ladestrom' lässt sich der Strom grob regulieren. Die notwendige Ladezeit nach halbstündigem Betrieb der Luftpumpen beträgt ca. 2 h.

Schaltuhren aufziehen. Von Hand mit gewinkeltem Schraubenzieher oder elektrisch (220V). Gangreserve 70 h.

Schaltuhren stellen. Zum Stellen der Schaltuhren muss der Urendeckel abgenommen werden. Nach Lösen des schwarzen Knopfes in der Mitte können die Schalthaken frei bewegt werde. Ausserdem ist auf den Wochentagsschalter zu achten (kleines Plastikrad seitlich unter der Tagesscheibe), ist ein Pfeil nach aussen gerichtet, so bedeutet das, dass am betreffenden Tag keine Schaltung erfolgt. Die Uhren müssen spätestens zehn Minuten vor dem Schaltvorgang gestellt werden. Der rote Knopf aussen am Gehäuse erlaubt das Schalten von Hand. Durch Anschliessen einer Luftpumpe sicherstellen, dass der Schalter in der richtigen Position ist ("aus") und die Stromversorgung funktioniert.

Durchführung

Probennahmestationen aufstellen. Holzstange mit einer Eisenstange einrammen. Pumpvorrichtung aufhängen, Stromversorgung anschliessen. Luftzelt mit Häringen am Boden befestigen. Luftzelt und Pumpe mit Schlauch verbinden. Für das Aufstellen von acht Stationen brauchen zwei Personen mit einem Auto je nach Gelände eine halbe bis eineinhalb Stunden.

Einsammeln des Materials. Wegen des grossen Volumens der Luftzelte sind je nach Grösse des Fahrzeugs mehrere Fahrten notwendig.

6.2. Aufbereitung der Proben

Vorbereitung

Ausheizen der Aktivkohle. Mit dem Messzylinder 650 ml Aktivkohle abmessen und in eine Aktivkohlefalle füllen. Beim Schliessen der Aktivkohlefalle (AKF) ist darauf zu achten, dass die Dichtung sauber ist (Kohlestaub!). Drei gefüllte AKFs in die Oefen der Ausheizanlage stellen und an das Vakuumsystem anschliessen. Die Kühlfalle aus Glas muss mit flüssigem Stickstoff gekühlt werden, vor jedem Ausheizvorgang sollte sie ausserdem geleert werden. Falls der Wassergehalt der Aktivkohle besonders hoch ist (z.B. bei frischer AK), sollte zum Ausfrieren die grosse Metallkühlfalle verwendet werden (Kühlung mit Trockeneis und Alkohol). Um die geeignete Temperatur von 400°C zu erreichen, müssen die Oefen mit 170 V gespiesen werden. Bei normal in den Eimern gelagerter Aktivkohle dauert das Ausheizen gut zwölf Stunden (Enddruck 0,1 mm Hg). Der flüssige Stickstoff muss vor allem am Anfang mehrmals nachgefüllt werden. Nach Ende des Ausheizens: AKFs schliessen, abtrennen und abhkühlen.

Ausheizen von Molekularsieb. Spezielle AKF verwenden oder andere AKFs vor Gebrauch gut ausputzen, damit das Molekularsieb nicht mit Aktivkohle kontaminiert wird. Eine AKF-Füllung Molekularsieb reicht für die Aufbereitung von drei Proben. Vorgehen wie bei Aktivkohle, das Ausheizen geht jedoch im allgemeinen etwas länger.

Durchführung

Aktivkohle vorkühlen. Eine AKF wird in das Dewar gestellt und angeschlossen, dann wird das Dewar mit einer Kühlmischung aus Trockeneis und Alkohol gefüllt. Dies muss spätestens eine halbe Stunde vor der eigentlichen Aufbereitung geschehen, damit die AK gut durchkühlen kann.

Molekularsieb wechseln

<u>Luftzelt anschliessen</u>. Dabei muss darauf geachtet werden, dass der speziell abgefeilte Anschluss am Ansaugschlauch bis zum Anschlag in das Ventil des Luftzeltes eingeschoben wird, damit sich das Sicherheitsventil öffnet.

Anfang Durchsaugen. Hähne am Glas-U-Rohr öffnen, Eingangshahn der AKF öffnen. Sobald Durchfluss unter 20 1/min gesunken ist, Pumpe einschalten und, wenn Durchfluss wieder gesunken ist, Ausgangshahn der AKF öffnen. Der Durchfluss sollte 18 bis 20 1/min betragen. Dann dauert das Durchsaugen einer Probe ca. eine Stunde.

Ende Durchsaugen. Wenn das Luftzelt leer ist und nicht rinnt, entsteht ein Unterdruck im Ansaugsystem und der Kompressor beginnt laut zu knattern. Das schadet für kurze Zeit nichts und ist das Signal zum Abstellen: Zähler ablesen, Ansaugstutzen aus dem Ventil des Luftzeltes ziehen und fünf Liter Laborluft oder Stickstoff (wenn die Laborluft kontaminiert ist) nachspülen. Hähne der AKF Schliessen und Kompressor abstellen.

Umfüllen in Messgefäss. Messgefäss in Sagex-Wanne stellen, mit Gummi befestigen und mit Kältemischung (Trockeneis/Alkohol) kühlen. Schnell die noch kalte AKF holen, öffnen und Aktivkohle mit Trichter in das Messgefäss füllen. Messgefäss schnell schliessen und eine halbe Stunde lang weiter kühlen.

Absaugen. Nach Ablauf einer halben Stunde weiterhin gekühltes Messgefäss an die Ausheizanlage anschliessen und 45 s lang absaugen. Messgefäss schliessen, abtrennen und auftauen.

6.3. Messung der Proben

Da die Proben von der KUeR in Freiburg gemessen werden, möchte ich hier nur auf eine Besonderheit der hier zu messenden Proben eingehen.

Durch eine unterschiedliche Häufelung der Aktivkohle im Messgefäss können sich verschiedene Messgeometrien ergeben, da das Xenon im Wesentlichen an die Aktivkohle gebunden ist. Durch leichtes Schütteln des Messgefässes muss die Oberfläche der Aktivkohle zunächst eingeebnet werden. sie liegt auf der Höhe des Deckels der Detektorhöhlung. Durch leichtes Drehen des Messgefässes werden dann die letzten Kohlekörner vom Deckel der Höhlung entfernt.

Bei Anwendung dieser Methode liegt der durch die unterschiedliche Messgeometrie bedingte Fehler unter 1,7~% (siehe C 4.2).

6.4. Auswertung

Die Xenon-133-Konzentration der Luftproben bestimmt man mit der Formel:

$$\chi = \frac{A}{(v + v_0)(1 + d)}$$

Dabei ist:

A : gemessene Aktivität, auf das Probennahmedatum zurückgerechnet.

V : mit der Gasuhr gemessenes Volumen

 V_{O} : Volumen der an der Aktivkohle adsorbierten Gase ≈ 7 Liter

d: Anteil des Wasserdampfes an der Luftprobe (bleibt am Mole-kularsieb hängen), maximal ca. 5%.

$$= \frac{p_{H_2O}(T)}{p_{tat}} F$$

F ist die relative Luftfeuchtigkeit und p_{tot} der Luftdruck. $p_{\mathcal{H}_2O}$ muss aus der Umgebungstemperatur T mithilfe folgender Tabelle berechnet werden:

T (°C)	p _{H2O} (torr)
0	4,6
5	6 , 5
10	9,2
12	10,5
14	12,0
16	13,6
18	15,5
20	17,5
22	19,8
24	22,4
26	25,2
28	28,3
30	31,8
32	35 , 7
34	39,9

6.5. Abfüllen von Eichgas

Kontrollieren, ob alle Hähne gut gefettet und dicht sind. Verzweigung an H, anschliessen. Zwei Eichvolumina oder ein Eichvolumen und die Nadel mit einem Glasfläschchen (Gummipfropfen mit der Nadel durchstechen) an die Verzweigung anschliessen. Gesamtes System evakuieren. Vorratsvolumen mit Eichgas an H_2 anschliessen. H_1 schliessen. Verbindungsteil zwischen Anlage und Vorratsvolumen evakuieren. H, wieder schliessen. Eichgas aus Vorratsvolumen in diesen Vergindungsteil expandieren. Hahn des Vorratsvolumens wieder schliessen, H, schliessen und durch Oeffnen von H, Eichgas aus dem Verbindungsteil in die Anlage expandieren. Nun kann am Manometer abgelesen werden, ob ungefähr der gewünschte Druck erreicht wurde; ist dies nicht der Fall, muss der Einschleusen von Eichgas durch den Verbindungsteil wiederholt werde. Anschliessend wird durch Oeffnen von H, das Eichgas in die Eichvolumina expandiert. Bei der Verwendung der Eichvolumina V_6 und V_7 sinkt dabei der Druck ungefähr um einen Faktor 0,58, bei Verwendung eines Glasfläschchens ungefähr um einen Faktor 0,45. Mit dem Quecksilbermanometer kann nun der Druck auf 1 % genau abgelesen werden. Da der Druck in beiden Eichvolumina jedoch genau gleich ist, ist das Verhältnis des Gehalts der beiden Volumina genauer bekannt (0,3 % Summe der relativen Fehler der Volumenmessungen).

Durch mehrfaches Einschleusen von Eichgas können auf diese Weise Eichproben der gewünschten Grössenordnung hergestellt werden. Ein genaues Abmessen einer vorgegebenen Menge ist mit dieser Apparatur nicht möglich, für unsere Anwendungen jedoch auch nicht erforderlich.

ANHANG C : MESSERGEBNISSE

1. FELDAUSRUESTUNG

1.1. Test der Luftpumpe P 1

Test mit Ventil, aber ohne Luftzelt

Pump- dauer (min)	Vorschalt-widerstand (Ω)	U belastet Batt am Ende des Pump- vorganges (V)	Volumen (1)
30	1	11	751
30	1	11,5	779
30	1	11,4	80 7
30	1	11,5	779
30	1	11,6	789
60	1,5	11,2	1160
60	1,5		1082
60	1,5	11,3	1090
Hitzete	est bei 42 [°] C		
30	1	11,7	772
Hitzete	est bei 44°C		
60	1,5	11,5	1382

Hitzetest bei 54°C

Leistung sinkt nach ca. 10 min rapid ab

Test mit Luftzelten

			Luftzelt Nr.	=
30	1		2	1256
30	1,5		2	1086
30	1,5		3	983
30	1,7	11,6	3	1146
30	1,7	11,5	2	1096
60	2,7		2	1066

1.2. Lagerausbeute von Luftbehältern

Nr.	γV	Ver- fahren	Proben- vol. (1)	Lager- zeit (d)	stat. Fehler	-	cps/pV 10 ⁻³	Ausbeute
Wetter	oallone	aus Kau	tschuk					
L 31 L 32	2799 3177	D L	- 878	- 9		16,72 3,74	5,974 1,178	0.197
L 35 L 36	4693 5327	D L	- 1217	- 7		28,46 6,89	6,065 1,293	0,213
PVC-Was	sserbal	1						
L 43 L 44	4460 3930	T D	-	- 7	1,5 2,5	0,211 0,187	0,473 0,476	1,006*
L 49 L 50	721 818	D L	-	- 15	1,6 3,9	4,12 3,00	5,715 3,662	0,641
Luftzel	t-Prot	otyp						
L 67 L 68	750 852	D L	- 896	- 9	1,0	2,37 2,88	3,158 3,376	1,069
(L 73 L 74	703 798	D L	- 966	- 8	1,3 0,8		0,734 0,977	1,331)
L 85 L 86	768 872	D L	- 817	- 5	0,5 0,5	5,52 6,29	7,193 7,208	1,002
L 105 L 106	1462 1487	D D	- 802	- 9	0,4 3,2		7,400 7,142	0,965
Luftzel	t Nr.	3						
L 138 L 139	5360 1255	G L	- 858	10,8	1,1 1,5	27,79 8,79 9,03 8,91	5,184 7,100	0,792
Luftzel	t Nr.	<u>1</u>				5,05,		
L 140 L 141		G L	- 968	- 9 , 0	1,1	25,11 8,95 8,72 8,83	4,897 7,483	0,884
Luftzel	t Nr.					,		
L 142 L 143		G L	- 1049	- 9 , 5	1,2 1,4	23,37 9,24 8,58 8,91	4,718 7,816	0,958
Luftzel	t Nr. 6							
L 149	2851	L	1091	6,2	1	25,86 26,33 21,69 22,12 21,91	9,311 7,685	0,825
Luftzel	t Nr. 7	7				22,12)		
L 150	2548	D	-	-	1,2	22,28 22,14 20,12 20,12 21,19	8,717	
L 151	2592	L	986	5,9	1,5 1,3	20,12) 21,19) 20,65	7,967	0,914

^{&#}x27;Nicht qan' verlässlich weden Leck in Eichdasanlage

Verwendete Abkürzungen

pV (torr⋅ml), Mass für die verwendete Eichgasmenge

- D Eichgas wurde direkt in das Messgefäss eingesaugt
- L Lagerprobe: Eichgas und Laborluft in Luftbehälter geblasen und anschliessend gelagert
- G Eichgas in Glasfläschchen abgefüllt und direkt gemessen. Da die Messgeometrie anders ist (siehe C 3.2.) muss für die Berechnung der Ausbeute der Umrechnungsfaktor berücksichtigt werden.

cps Zählrate, bezogen auf ein mehrerenProben gemeinsames Referenzdatum. Refdat

Ausbeute Aktivitätsausbeute bezüglich der Referenzprobe = $(cps/pV)_{T}$ / $(cps/pV)_{D}$.

Wenn die Referenzprobe im Glasfläschchen gemessen wurde, muss ausserdem der Umrechnungsfaktor Glas/Messgefäss berücksichtigt werden.

Rinnversuche*

Luftzelt Nr.	Lagerzeit (d)	Einfüllmenge (1)	Verlust %
4	11	1074	6
5	11	827	1
6	12	1000	gross
7	12	1018	3

Die Verluste aus diesen Versuchen und diejenigen, die mit den Proben L 138 bis L 151 gemessen wurden, können nicht ohne Weiteres verglichen werden, da die Luftzelte bei den letzteren ungünstiger, d.h. aufeinanderliegend gelagert wurden. Der auf Seite 16 gezogene Schluss scheint somit gerechtfertigt.

^{*} durchgeführt von G.Schriber, BKW.

2. AUFBEREITUNG

2.1. Probenvolumen nach der Aufbereitung

Um das Probenvolumen nach der Aufbereitung zu messen, wurden jeweils ca 1000 l Laborluft durch die Aufbereitungsanlage gepumpt. Dann wurde die Aktivkohlefalle an ein leeres Luftkissen angeschlossen und aufgetaut. Nach der Zeit t wurde das Kissen abgetrennt und sein Inhalt mit der Gasuhr gemessen. Die Messung dieses Volumens war vor allem für die Entwicklung der Messgefässe wichtig.

Datum	Probenvol. anfangs (1)	t (h)	Probenvol. nachher (1)
30.4.76 7.5. 17.5. 18.5. 21.5. 25.5. 26.5.	1000 1000 1000 1000 1002 1000 1000	2 2 5 17 6,6 16,3 5,6	6,0 6,1 5,9 6,6 6,5 5,9 6,5
8.6. 9.6.	620 590	4,7 16	6,27 ± 5,7% 7,7 6,5

Dies ist jedoch noch nicht das Volumen der adsorbierten Probe, denn auch bei Raumtemperatur ist noch Gas an der Aktivkohle gebunden. Diese Gasmenge kann afu 1 ± 1 Liter geschätzt werden. Das gesamte Probenvolumen beträgt somit ca. 7 Liter.

2.2. Druck im Messgefäss

Datum	Messgefäss	Probenvolumen (1)	Absaugdauer (s)	Druck (mbar)
12.3.76	alt	1000	45	950
11.3.	alt	1000	60	840
27.2.	alt	1100	60	760
23.2.	alt	1000	60	690
25.2.	alt	1000	90	540
11.3.	alt	1010	90	530

Die hier angegebenen Drucke sind ca 20% zu niedrig, da das Manometer und die Zuleitung vor dem Anschliessen evakuiert wurden.

27.7. neu 1008 45 1080

hier betrug der Druck im Manometer vor dem Anschliessen 1000 mbar.

3. MESSUNG

3.1. Nulleffekte

Um den Nulleffekt zu ermitteln, wurden 25 Messungen ausgewertet, bei denen die Aktivitäten sehr gering waren, bzw unter der Nachweisgrenze lagen. Die Peakbreite lag zwischen drei und fünf Kanälen.

 \mathcal{M}_{S+B} = Bruttosignal, \mathcal{M}_{S} = Nettosignal, \mathcal{M}_{B} = \mathcal{M}_{S+B} - \mathcal{M}_{S} = Nulleffekt

Datum	Anzahl Kanäle	^M S+B	/"s	$\mu_{\rm B}^{\prime}/{\rm Kanal}$
7.2.	3	729	36	231
24.2.	4	2180	78	526
8.2.	4	1344	62	321
13.12.	3	1131	28	368
14.12.	3	1144	34	370
16.12.	5	1962	52	382
16.12.	4	1233	37	299
29.11	4	729	29	175
4.12.	4	905	99	202
8.12.	4	1156	62	274
15.11.	4	1271	3 5	309
24.2.	4	740	45	299
1.2.	5	1281	46	247
30.1.	5	1254	37	243
29.1.	4	1162	40	281
28.1.	5	1770	45	345
27.1.	6	937	70	145
7.1.	4	1121	17	276
10.1.	3	1336	37	433
10.1.	4	2235	53	546
12.1.	4	1084	34	263
4.2.	5	1056	51	201
30.1.	3	795	24	257
1.2.	5	1121	54	213
			M _B /Kā	anal = 295 <u>+</u> 20

Messdauer bei all diesen Proben 40 000 s.

3.2. Eichung der Messgefässe

Nr.	Уq	Ver- fahren	stat. Fehler	cps Refdat.	cps Mittel	cps/pV 10 ⁻³	D/G
L 108	4953	G	0,5 % 0,5	25,59 23,31	24,45	4,936	1 706
L 109	1140	D	0,7 0,5	9,54 9,87	9,71	8,517	1,726
L 110	4778	G	0,5	24,67 } 28,65 }	26,66	5,579	1,597
L 111	1118	D	0,4 0,6	9,51	9,96	8,909	1,397
L 112 L 113	4662 1073	G D	0,5 0,7	24,40 9,77		5,234 9,105	1,740
н 113	1073	D	0,7	<i>3,77</i>		J,103	
L 114 L 115	4545 1064	G D	0,5 0,7	24,25 9,47		5,336 8,900	1,668
L 116	4429	G	0,5	23,63		5,336	1 (46
L 117	999	D	0,8 1,6	8,71 8,83	8,77	8,782	1,646
L 118	4312	G	0,5	23,10		5,375	
L 118	1009	D	0,8	9,04		8,959	1,672
L 120	4312	G	0,9	21,78		5,051	1,812
L 121	992	D	0,8 1,6	9,33} 8,83	9,08	9,153	1,012
L 122	4195	G	0,9	21,28		5,072	
L 123	1009	D	0,9 1,6	8,61 8,92	8,77	8,692	1,713
L 126	3962	G	1,0 1,5	20,49 \ 20,07 }	20,28	5,118	
L 127	928	D	0,9 1,6	8,52 8,45	8,49	9,149	1,788
L 128	6934	G	0,7	35,49		5,118	
L 129	1596	D	0,7 1,2	15,00 14,54	14,77	9,254	1,809
L 130	6585	G	0,8	33,25		5,050	
L 131	1541	D		13,52 13,85	13,69	8,884	1,759
L 132	6235	G	0,8	31,39		5,034	
L 133	1435	D		13,28	13,09		1,812

 $\overline{D/G} = 1,729 + 1,2%$

4. AUSBEUTE UND REPRODUZIERBARKEIT

4.1. Ausbeutemessungen

Verwendete Symbole für die Verfahren:

D : direktes Einsaugen des Eichgases ins Messgefäss

N : normale Probenaufbereitung

 N_1 : Bei Aufbereitung mit zwei hintereinandergeschalteten AKFs: Probe aus der ersten AKF.

No: entsprechende Probe aus der zweiten AKF

M\$: Messung des verwendeten Molekularsiebs in einem normalen Messgefäss, da weniger Molekularsieb als Aktivkohle verwendet wird, ist die Messgeometrie hier wesentlich schlechter und die Aktivitäten werden damit unterschätzt. Ein zu erwartender Faktor 2 bis 5 spielt jedoch angeder nicht nachweisbaren Mengen keine Rolle.

Ab: Abgesaugter Gas (bei der Volumenredution nach Umfüllen in das Messge-

Weitere Angaben finden sich im Hauppteil und auf Seite C3.

Nr.	рV	Ver- fahren	Proben-vol. (1)	MG	stat. Fehler	cps	cps Mittel	cps pV	Relative Ausbeute
L 99 L 100	2096 1846	D N	- 930	III	1,4 1,8	20,37 17,45		9,719 9,453	0,973
L 101 L 102	3056 2692	D N	- 927	III	0,9 1,2	0,992 0,875		0,3246 0,3520	1,001
L 134 L 135a L 135b	6002 1405	G N 1 N ₂	- 733	G20 5 6	0,8 0,8 1,4	30,11 11,96 11,91 <0,001	11,94	5,017 8,498 <0,0007	0,980
L 135c		Ab	12	1		< 0,000	1		
L 144 L 145a	6468 1490	G N 1	- 861	G25 10	0,9 0,8 1,2	32,09 13,48) 13,10}	13,29	4,961 8,919	1,040
L 145b		N ₂ Ab	25	9 8		< 0,06 < 0,04		<0,04 <0,03	<0,007 <0,005
L 146 L 147a L 147b	6002 1405	G ^N l	- 809	G12 2 5	0,9 0,9 1,2	27,93 11,77 12,31 <0,07	12,04	4,653 8,569 <0,05	1,065 <0,006
L 153	1609	n ₂ D	-	9	0,3 0,3	21,14) 21,56	21,35	13,27	
L 154a	1637	N ₁		3	0,5 0,5	16,42) 16,17)	16,30	9,96	0,750
L 154b L 154c L 154d		N ₂ Ab MS		8 5 2	0,7	4,36 <0,167 <0,01		2,66 <0,10 <0,006	0,201 <0,008 <0,0005

Hier wurden während der Aufbereitung die AKFs versehentlich nur ungenügend gekühlt, daher konnte das Xenon bis in die zweite Kühlfalle gelangen. Die-

Nr.	pV	Ver- fahren	Proben-vol. (1)	MG	stat. Fehler	cps cps Mittel	cps pV 10 ⁻³	Relative Ausbeute		
ser Ver	ser Versuch wurde deshalb bei der Berechnung der Ausbeute nicht berücksichtigt.									
L 155	1569	D	-	7	0,6 0,6	20,08 20,32 20,20	12,87			
L 156a	1596	N ₁	1036	2	0,6 0,6	20,76 20,25 20,51	12,85	0,998		
L 156b		N		6		<0,01	< 0,006			
L 156c		n Ab		5		<0,01		<0,0005		
L 156d		MS		8		<0,01		<0,0005		
L 157	1515	D	-	4	0,7	20,28} 20.35	13.43			

mittlere Ausbeute für das übliche Verfahren (N_1) : 1,002 + 1,19%

20,42

<0,07

19,42

< 0,11

20,32 20,77 20,54

19,15 19,12 19,13 13,33 0,992

<0,05 <0,003

12,99 0,968

<0,07 <0,006

13,41

Da diese Experimente nicht alle hintereinander, sondern in verschiedenen Abständen durchgeführt wurde, ist dieser Mittelwert sehr verlässlich.

4.2. Reproduzierbarkeit der Messgeometrie

N

D

L 158a 1541

L 160a 1473

1448

L 158b

L 159

L 160b

1152

1052

10

8

Die Probe L 159 wurde zwölfmal gemessen und nach heder Messung fest geschüttelt. Durch vorsichtiges Schütteln und Drehen wurde die Aktivkohle anschliessend eingeebnet (siehe B6.3.).

't'bedeutet hier den zeitlichen Abstand zur ersten Messung.

t	stat. Fehler	cps	
(b)	B	(zerfallskorri	giert)
0	0,6	6 , 967	
0,236	0,6	6,976	
0,952	0,6	6,988	
1,125	0,6	6 , 770	
1,313	0,7	7,024	
1,917	0,7	7,088	cps = 6,986 + 1,7%
1,979	0,7	6,942	
2,021	0,7	6,898	
2,188	0,7	7,032	
2,230	0,7	7,068	
2,930	0,7	6,852	
3,23	0,7	7,224	

5. AUSHEIZEXPERIMENTE

5.1. Ausheizexperimente mit Massenspektrometrie

Ueber das Ausheizen von Ar, Kr und Xe aus Aktivkohle ohne Vakuum findet sich Näheres in Abschnitt A 1.3.

5.2. Ausheizexperimente mit Radioxenon

Um zu prüfen, ob der routinemässige Ausheizvorgang für Aktivkohle alles ursprünglich an die Aktivkohle gebundene Xenon entfernt, wurde die Aktivkohle von Probe 156a (Ausbeutemessungen), die zu diesem Zeitpunkt eine Zählrate von ca 7 cps bewirkt hätte, in eine Aktivkohlefalle gefüllt, wie üblich ausgeheizt, dann in ein Messgefäss gefüllt und gemessen (L 162). Die Zählrate lag unter 0,002 cps (d.h. ca 6 pCi). Beim routinmässigen Ausheizen wird also praktisch alles Xenon abgesaugt.

6. ENTWICKLUNG DER MESSGEFAESSE

6.1. Eichung der alten Messgefässe

Volumen der alten Messgefässe : 3 1

Nr.	рV	Ver- fahren	stat. Fehler %	cps Refdat	cps/pV 10 ⁻³	D/G
L 59	1480	D	2,6	8,49	5,737	1,616
L 60	12761	G	1,0	45,29	3,549	
L 65	2733	D	3,7	14,03	5,135	1,630
L 66	26746	G	1,0	84,20	3,148	

 $\overline{D/G} = 1,623$

Umrechnungsfaktor für die Glasfläschchen: 5,24 nCi/cps. Also ist der Umrechnungsfaktor für die alten Messgefässe: 3,23 nCi/cps

6.2. Versuche mit Plastik-Messgefässen

Für eine genauere Beschreibung dieser Versuche siehe A 2.6.

Flaches Polyäthylen-Gefäss

Nr.	pV	Ver- fahren	Proben- volumen	t* (d)	stat. Fehler %	cps Refdat	cps/pV 10 ⁻³	Relative Ausbeute
L 64	2425	D	_	-	1,3	13,48	5,559	
L 63	2750	P	867		1,8	6,50	2,364	0,425
		P		20,2	5,0	4,03	1,467	0,264
		Ū		20,3	3,0	3,56	1,294	0,232
		Leer		20,4		0,55	0,2	0,036

Der erste Messwert von L 63 ist ein Miteel aus 19 Messungen (siehe Abb. auf der nächsten Seite). Die Probe war noch nicht ganz aufgetaut, als sie auf den Zähler kam.Beim Verfahren U wurde die Aktivkohle vor der Messung aus dem ursprünglich verwendeten Messgefäss in ein gleichartiges umgefüllt, um zu sehen wieviel Aktivität an die Aktivkohle selber gebunden ist. Beim Verfahren 'Leer' wurde das leleerte, ursprünglich verwendete Gefäss gemessen, um zu sehen ob Xenon an den Wänden adsorbiert wird.

L 69	738	D	_		0,5	5,94	8,049	
L 70	838	P	840	4,2	1,0	2,63	3,133	0,389
				5,2	1,0	2,59	3,095	0,385
				6,3	1,1	2,43	2,897	0,360
				7,1	1,2	2,51	2,999	0,373
				8,2	1,5	2,38	2,841	0,353
				9,0	1,3	2,41	2,875	0,357

^{*} Zeit nach dem Auftauen des Messgefässes

Nr.	pV	Ver- fahren	Proben- volumen	t* (d)	stat. Fehler	cps Refdat	cps/pV 10 ⁻³	Relative Ausbeute
L 75	691	D	_	-	1,3	5,40	7,809	
L 7 6	784	P	901	4,1	2,6	2,97	3,787	0,485
				4,5	1,6	3,23	4,118	0,527
				6,5	2,4	2,56	3,269	0,419
				11,2	3,0	2,30	2,928	0,375
L 78	4300	G	-	_	0,9	29,94	9,700	
L 77	581	P	910	2,2	1,2	2,63	4,534	0,467
				6,9	2,1	2,28	3,921	0,404
L 79	5348	D	_	-	0,7	39,41	7,370	
L 80	6070	P	878	0	1,0	27,84	4,586	0,622
				5,2		19,05	3,138	0,426

L 80 wurde gekühlt auf den Zähler gebracht. Weitere Messungen siehe Abb.

KUeR-P	lastikge:	fässe						
L 83	1703	D	_	-	2,2	11,81	6,935	
L 84	1933	P*	910	4,6	2,0	15,13	7,827	1,129
				9,4	3,1	13,14	6 , 798	0,980
L 87	744	D	_	_	0,5	5,65	7,594	
L 88	845	p*	923	3,6	0,5	7,51	8,893	1,171

7. VORVERSUCHE IM FELD

7.1. Erste Feldmessungen

Die Proben L 15 und L 16 wurden am 2.6.75 und 3.6.75 bei der Einsatzzentrale BKW, ca l km WNW vom KKM gewonnen. Am gleichen Ort war eine Reuter-Stokes-Kammer aufgestellt. Die Probennahmestelle lag in der Abluftfahne.

Nr.	Probennahme	Anzeige R.S.Kammer r/h	Abgabe- rate mCi/s	Messdat.	Aktivität korr.* nCi
L 15	2.6.75				
	10.32 bis 11.25 h	10 7	9	2.6.	0,875
				7.6.	0,844
	Probenvolumen: 1060	7		8.6.	0,819
	Propenvolumen: 1060	Ţ		9.6.	0,917
				Mittelwert:	0,863
L 16	3.6.75 9.40 bis 10.30 h	9 11	9	17.6.	0,588

Probenvolumen: 1000 1

Diese Zahlen sind jedoch mit Vorsicht zu betrachten, da die Methode zu diesem Zeitpunkt noch nicht ausgereift war. Es wurden keine Luftbehälter verwendet, sondern die Luft wurde direkt durch die kalte Aktivkohle gesaugt.

7.2. Kleine Kampagne Sommer 1975

Nr.	Probenna	ahme		gela-	Proben-	stat.	pCi/m^3	pCi/m ³
		Beginn	Dauer	gert	volumen	Fehler		korr.*
			(min)	(b)	(1)	98		
1/38	23.7.	15.15	3	4,95	900		< 13	< 34
1/11	11	11	4	6,69	880	50	32	120
1/14	11	11	3	0,72	1000	5	87	101
1/15	#	15.23	3	3,09	810	20	64	120
1/18	11	•	3	6,91	1170	30	32	129
1/20	**	15.15	3	2,26	590		≤16	≤ 25
1/22	**	"	3	1,16	475		19	24
1/10	11	15.21	3	3,18	740	30	32	60
2/51	29.7.	10.59	11	2,28	1027	1	5920	9295
2/55	**	11	12	1,88	990	1	2895	4200
3/28	29.7.	16.30	10	6,92	800	10	180	709
3/29	"	16.15	10	5,84	780	5	258	816
3/30	11	16.30	10	9,73	760		< 39	<266
3/32	Ħ	16.15	9	2,79	740	6	144	252
3/33	11	16.15	15	9,68	920	50	45	306

Da bei der Probenlagerung in den bei dieser Kampagne verwendeten Wetterballonen Xenonverluste auftreten (C 1.3.), wurde versucht, eine Korrektur für diesen Verlust anzubringen. Aufgrund der Lagerungsproben (L 31/32 und L35/36) wurde für diesen Verlust eine Halbwertszeit von 3,5 Tagen angenommen. Die so korrigierten Konzentrationen stehen in der letzten Spalte der voranstehenden Tabelle. Es zeigt sich, dass diese Werte schlechter mit einer Gaussverteilung in Einklang zu bringen sind, als die unkorrigierten Werte. Die Korrektur ist also nicht unbedingt sinnvoll, was nicht erstaunt, da die Hautdicke der Ballone und damit wohl auch die Verlustrate nicht sehr konstant ist. Die Ergebnisse dieser Kampagne sind daher für eine Auswertung nicht brauchbar.

ANHANG D: BERECHNUNGEN

1. Zwischenergebnisse der Parametervariationen

Im Folgenden sind die Zwischenergebnisse der Parametervariationen dargestellt, aus denen man den Einfluss der einzelnen Korrekturen ablesen kann. Variiert wurden diejenigen Parameter dren Variationsbedingungen im ersten Teil der Tabellen $\neq 0$ sind. Die Reihenfolge der Versuche ist (wie schon im Hauptteil): 6, 8, 9, 10 ; 2, 11 ; 1, 4, 5. Die Schlussergebnisse der Variationen, sowie die Erklärung der Abkürzungen befinden sich auf Seite 57 ff.

1.n • 6		
VARIATION	Dža	PARAMETER

	AUS	VON	BIS	STEP
%ILLmICHTUMC	230	Ø	Ø	Ø
LETIERKAT.	4	Ø	Ø	Ø
UEEEnHCEHJILG	5	ย	Ø	ks.
LIMBESCHI.	5			Ø

	KIT HOEHENKOLL	LKTUR	OHNE HGEHENKORREKTUR		
	MIT OBEMEN	OHNE OBENE	MIT GBENEN	OHNE OBE	
	Granzen	GARAZEN	GRENZEN	GRENZEN	
VILLAICHTULG	జప్రణ	230	230	230	
LETTERPAT,	4	4	4	4	
January San Ji G	7	5 .	5 5	5	
WINDGESURW.	5	5	5	5	
STAILSTIK CHKE	OBERE GRENZEN		,		
blatusansass.	1.85964	1.09964	1.10283	1.10283	
Balle kanTa	9	9	9	. 9 -	
ABL .>FARTON 18	3	3	3	3	
MAX . ASL.	-2.72212	-2.72212	-2.79381	-2.79381	
STATISTIC MIT	OBZLIŁA GHENZEN				
u Thiilianinia. •	1.10133	1.10103	1.10579	1.10579	
BEH. LEATE	11	11	11	11	
ADL .>FARTCR 13	3 -	3	3	3	
DAZ. ADL.	-2.72212	-2.72212	-2.79381	-2.79381	

LA. 6 VANIATION DER PARAMETER :

	AUS	•	VON	BIS	STE
WILDAI CHIUNG	230		210	250	2
LETTERPAT.	4		Ø	Ø	c
JERELH CEHOLIG	5		3	Ø	Ø
FIRECELORIA.	5				3

	MIT HOEHENMOHAEMTUA		OHME HOEHENKOMMELTUM		
	RIT GBELEN	OHNE OBERE	MIT CBEMEN	OHNE OBE	
	GRENZEH,	GHENZEN	GRENZEN	GRENZEN	
VINCERICATURG	228	228	228	228	
LEITERPAT.	4	4	21	<i>L</i> ;	
1202.2.62831.0	5	5	5	5	
ri: Edescht.	5	5	5	5 ;	
LIMTICTIK GENE	GBENE GNENZEN				
Thi Dimbhik.	1.28995	1.08995	1.09049	1.09049	
Sall. Warte	٠,9	. 9	9	9	
ABL.>FAZTOR 13	3	3	3	3	
MARK ABL.	-2.17356	-2.17356	-2.24341	-2.24341	
STATISTIK MIT	OBEREN GRENZEN				
JTALJAJJASK.	1.07223	1.07203	1.67385	1.07385	
SEMI LEATE	12	12	12	12	
ATA.>FARTOL 18	3	3	3	3 ;	
3 AZ - AB -	-2.17356	-2.17356	-2.24341	-2.24341	

NR. 6 VALIATION DER PARAMETER

	AUP	VON	BIS	STEP
WINDELICHTUNG	238	210	253	2
WETTERKAT.	4	5	6	1
UEBERHOEHUNG	5	۵	Ø	Ø
WINDGESCHW.	5			O

	MIT HOEHENKORKEKTUR		OHNE HUEKENKOMMERTUR		
	MIT OBENEN	OHNE CHERE	MIT OBENEN	Chas obeas	
	GNENZEN	GMENZEN	GAENZEN	GRENZEN	
WINDRICHTUNG	228	228	226	೮೦ ೬	
WETTERKAT.	2	2	2	Ë	
UEBERHOEHUNG	5	5	5	5	
WINDGESCHW.	5	5	5	5	
STATISTIK OHNE	OBERE GRENZEN				
STANDARDARW.	·467299	•467299	•467078	• 577c	
BEN. WELTE	9	9	9	9	
ABW.>FARTOR 10	Ü	₽.	e e	5	
MAX. ADV.	816243	616243	27181	627101	
STATISTIR MIT	OBEREN GHENZEN				
STANDARLABW.	476913	•478513	•480906	•463936	
BEN. WERTE	11	11	11	11	
ABW.>FARTOR 10	Ø	ย้	ë	ä	
MAX - ABW -	818243	818243	827151	6271el	

NR. 6 VARIATION DER PARAMETER

	AUS	VON	315	STEP
WINDHICHTUNG	230	210	250	5
WETTERKAT.	4	22	6	1
UEBEAHOEHUNG	5	១	300	13
WINDGESCHW.	5			ಳ

	MIT HOEHENKORREKTUA		OHNE HOEHENA	OnnEETOn	
	MIT OBENEN	OHNE OBERE	NIT OBELEN	Unit Office	
	GREEZEN	GnENZEN	GRENZEN	GARAZEN	
WINDRICHTONG	828	288	888	886	
WETTERRAI.	8	23	2	2	
UEBERHOEHUNG	180	170	100	210	
WINDGESCHW.	5	5	5	5	
STATISTIK OHNE	OBERE GRENZEI	Ni.			
STANDARDARW.	•435229	.434954	•41799a	•415626	
BioN. WERTE	9	9	9	9	
ABL. > FARTOR 10	Vì	(-)	63	ψt	
NAX - ABW -	852653	026759	937157	902754	
STATISTIK MIT	OBEREN GRENZET	N.			
STANDARDARE.	428602	•429378	-413659	·415626	
BER. VERTE	11	11	11	9	
ABW.>FARTOR 10	O	r1	0	Ü	
MAX - ABW -	852653	826759	937157	982754	

DR. 6 VAMIATION	DER	PARAMETER
		2014

	AUS	VCM	B15	Sizr
willianidaidhe	230	ស	tô.	ΰ
JaBalin lEWUI.G	5	G	ย	زز
leffe	4	ن	છ	e3
AILLOZUUHA.	5			Ø

	MIT HOMHERKOMERTUR		CHME HOEHENKOMAEKTUM	
	FIF CULLEN	CHILE CAELL	MIT OBEREN	OHER OBEAE
	CHELZEM .	GRENZEN	GHENZEN	Grandzen
williandatuse	23.)	232	830	230
بالمال المهر السيفائية والمار	5	ċ	S	5
والمتار مستور وشالا		4	4	4
Williams Shike	ő	ä	5	5
LINILLIE CHKE	GRENE GRENZEN	,		
Jim Jamenska	1.09964	1.09964	1.10283	1.10283
DELLA NALITE	9	9	9	9
ALL . FREE LO. 13	3	3	3	3
2022 • ASW •	-2.72212	-2.72212	-£.795€1	-2.79381
LTATILLIE MIT	GREATH GAENZER	:		
٠.٨١٥.٠٠.١١.٠	1.10103	1.10103	1.18579	1.18579
Dat. : 12.72	11	11	11	11
ABL .> FAYION 13	3	3	3	3
MAN - BELL	-2.73212	-2.72212	-2.79381	-2.79381

i.... 6 Valiation den palaretea

	ุกบิริ	VOV.	BIS	STEE
LII DI JHT YC	233	216	250	2
Ulliano the Ji.G	5	2	Ŀ	Ð.
A	4	z.	Ü	Ø
i II bilillionia	5			ย

		EKTUM OHNE OBERE GRENZEN	OHME HOEHENKON MIT OBENEN GRENZEN	OHNE OBERE
VI. 01.10A4.0116		228	558	228
ba haatbaadhe talicaa wa t. tiil baadhe	5 4 3	5 4 5	5 4 5	5 4 5
	CORNE CHENZEN	_	-	_
BIANDANDABW. BEN - WandE ANN ->BANION 10	9	1.08995 9 3	1.09049 9 3	1.09049 9 3
	-2-17356	-	-2.24341	-2.24341
STATISTIK KIT STALDALDASV. BEL- VERTE AGG. »FRKTGR 18	1.07233 12	1.67203 12	1.67385 12: 3	12
PAK. ABW.		-2.17356	-2.24341	3 -2.24341

NR. 6 VARIATION DER PARAMETER

	AUS	UON	515	51EF
WINDATICHTUNG	230	210	250	2
UEBERHOEHUNG	5	ຍ	333	13
WETTERKAT.	/i	Ü	J	υ
WINDGESCHW.	5			ง

	MIT HOEHENKO	MIT HOEHERKORRENTUR		OHNE HOERENAOLLARICA		
	MIT OPEREN GRENZEN	OHNE OBERE GRENZEN	MIT CBEREN GRENZEN	CHAE CBEME ChENEAX		
WINDRICHTUNG	228	226	228	د25		
UEBERHOEHUNG	133	195	262	537		
WETTERHAT.	4	4	4	1		
WINDGESCHW.	5	5	5	5		
STATISTIK OHNE	OBERE GRENZE	×.				
STAMDARDABW.	1.03752	1.02636	•994035	•921976 :		
DEN. WEATE	9	9	ý	9		
ABW.>FARTOR 13	Z ₁	4	Ž,			
MAK - ABW -	-2.26818	-2.36452	-2.63417	-2.7337		
STATISTIK MIT	GBEREN GRENZEN	N				
STANDARDABW.	1.01449	1.06647	•994635	1,32114		
BEN. WERTE	12	10	9	13		
ABW . > FAKTOR 10	4	4	4	4		
MAX . ABW .	-2.26818	-2.36452	-2.63417	-2.7337		

D

NK. 6 VARIATION DER PARAMETER

	LUS	VON	ais	STEP
WINDALICHTUNG	230	210	250	2
UEBEAHOEHUNG	ن	ω	350	10
WETTERRAT.	4	2	6	1
WINDGESCHW.	5			Ð

	MIT HOEHENKO	MIT HOEHENKORREKTUM		OHNE HOLHENWORMERTUR		
	MIT OBEREN GRENZEN	OHNE OBERE GRENZEN	MIT OBEREN URENZEN	CHNE CPERT ORENZEN		
WINDATCHTUMG	ខឧត	388	સહેઠ	625		
UEBERHUEHUNG	130	190	264	233		
WETTERNAT.	? ?	ខ	2	2		
WINDGESCHW.	5	5	5	5		
STATISTIK ORN	E CHERE GRENZE	N				
STANDOMOBINE.	•43odbo	•436J1b	•453536	•410047		
Br.iv . William.	9	9	9	9		
ABL . > FARTOR 1	ð ()	(·)	ġ	ź		
MAX - Abk -	623175	- •9JUDD	-1 -24979	-iac.5		
STATISTIK MIT	OBENZEI	V				
STANDARDARW.	•436972	•442069	•းယုဒ်ကရုံစုံ	•416647		
BEN. WERTE	11	10	,	9		
ABW.>FAKTOR 1	0 0	õ	ž	ś		
NAX . ABW .	623175	93358	-1.24979	-1.0835		

		ø								
Nn - 8						NR• β				•
VARIATION DEA	PARAMETER				,	VARIATION DER F	PARAMETER			
							AUS	VON BIS	STEP	
	AUS		TEP		1	WINDLICHTUNG	246	235 250	1	
WINDAIGHTUNG	248		0			WETTERKAT.	3	s 6	1	
LETTENHAT.	3		2			JEBERHÖEHUNG	15	o o	i,	
UEREMHCERUMG	15		Ø			WINDGESCHW.	5		บ	
WINDGESCHW.	5		0				J		· ·	
	MIT HOEHENKOM	KEKTUM	OHNE HOLHENK	Omtextur			MIT HOEHENKOM		OHNE HOEMENH	
	KIT CHEKEM	GHILE OBERE	MIA OBEREN	OHNE OBERE			MIT OBEREN	OHNE OBERE	AIT CHEAEN	CHIE CREWE
	CHELZEN ,	C.ENZEN	CHENZEN	GHENZEN			GLENZEN	GRENZEN	GHENZEN	Unbl.ZEN
\$10.521CFTUNG		248	248	o ku	,	WINDLICHTUNG	840	243	243	z43
	248 3	3	3	248 3 -		ETTENKA:	6	3	2	4
VETTERMAI. Demerkhöehung	3 15	15	3 15	15		JEBERHOEHUNG	15	15	15 .	lo
VINDCESCHV.	5	5	5	5		WINDCESCHW.	5	5	5	5
# 1	5	5	3	3			•	J	J	J
STATISTIK CHM	E CBERE GRENZEN				:	STATISTIK CHRE	OBERF GRENZEN			
STANDAGICARA.	5.62887	5 • 62887	6-11382	6.11382		5 IANDARLATAR •	.355657	3.705 79E- 02	-339563	.131174
BEN. LEATE	z	2	ટ	뇓		JEN. WELTE	22	٤:	2	E.
ABL.>FARTCE 12	3 Z	2	2	Z.		ABE.>FARTOR 13		2	2	i.
MAK. ABL.	-22.225	-22.225	-23.3188	-23.3168	1	MAX • ABW •	-4.65583	-15.293	-7.7415	-20-31.4
					,	STATISTIK EIT (ORBUDEN GUENZEN			
	OBEMEN GRENZEN		0 60106	0. 66146		STANDANDARW.	2.37522	7-19272	3.41463	12.1157
STANDARDABW.	7 - 85548	7 -89546	8.64146	8•64146 7		BEN. LERTE	6	7	6	7
BELL NEATE	ع د د	ម 2	7 2	2		ABW.>FAKTOR 10	3	2	2	
ABW.>FARTOR 10 MAX. ABW.	3 2 -22.225	-22.225	-23.3188	-23.3188		MAX ABW	-4.65583	-15.293	-7.7415	999999
Park • But •	-22.225	-22.22	-23.3100	-23.3100	•		-1103300	.5,0		
					•					. [
										A
										4
h.n 8						NA. 8 VARIATION DER F	DAUANETEU			1
VARIATION DER	PANAMETER				,	VARIATION DER F	PHINDELEN			•
	AUS	VON BIS S	TEP	"			AUS	VON BIS	STEP	
DMCTHOLLSILV	≥48		1		1	WINDMICHTUNG	248	255 250	1	
WETTERKAT.	3	0 0	e			WETTERKAT.	3	2 6	1	
CERERHSEHUNG	15		Ø			JEREKHOEHUNG	15	0 303	10	
WILDGESORY.	5		Ø		,	WINDGESCHW.	5		J	
	MIT HOEHENKOM	REKTUR	OHNE HOEHENK	nakrkitta			EIT HOEHENKOM	nĒkTUn	Chile holden	thmerida
	MIT GBENEN	CHNE CBERE	MIT OBELEN	OHNE OBERE			MIT OBEREN	OHNE CHERE	MIT CHEREN	CHAE CBEAS
	GRENZEL	GLENZEN	GRENZEN	GRENZEN			GRENZEN	UENZEN	CLENZEN	GRENZEN
										A (1)
WILDMICHIJMG	240	243	243	243		WINDRICHTUNG	240	243	243	243
LhTihmPaT.	3	3	3	3		ETTEMAT.	6	3 0	<u>ئ</u> د	4
UkBami.GamJi.G	15	15	15	15		JEBERHOEHUNG	170	ິນ 5	ن 5	253 5
kii Dhabuhk.	5	5	5	5 ,	,	wINDGESCHW.	5	J	Э)
STATISTIC ORD	E GBERE GRENZEN				:	STATISTIK OHNE	OBENE CHENZEN			
STATIBATIAD**	3.10737	3.70579E-02	-361154	•361154		STANDARDARW.	O	ä	.277289	· 3
Ban Wanta	2	2	2	5		BEN. WERTE	Ĭ	2	2	ī
ABE.>FARTOR 10	_	2	5	5		NEW.>FARTOR 10	2	2	2	2
MAD. ABI	-16.5762	-15.293	-16.0933	-16.0933		MAX . ABW.	999999.	-15.2159	-7.59518	959999.
						tone me	A			
	OBEMEN CHENZEN			•		STATISTIR MIT (72 1 1 77 1	3 3677	12 . 17
STALLDARDARW.	7-1331	7 - 19272	7.3996	7.3996		STANDARDABU. BEN. WEATE	U 1	7 - 1678 7	3.36776	13.6Je7 2
Balle Labila		7	7	7		ABW.>FAKTOR 10	•	3	د) 2	<u>د</u> د
ABL *>FARTOn 12		-15 000	2	2 :		MAX. ABW.	999999.	-15.2159	-7.5v5le	999999.
FAX. ABA.	-18.5762	-15.293	-16.0933	-16.0933		DIV##	,,,,,,	13:4137	,>>	

NR. 8 VARIATION DER PARAMETER

	AUS		BIS	STEF	
LICONICHIUNG	24%	نا	မ	10	
UEFERHORHULG	15	U	ú	ລ	
LETTERMAT.	3	ย	ນ	Ø	
WINDGESCHW.	5			Ø	

	KIT HOWHELKORREKTUR		OHRE HOLHENKOMMERTUA		
	MIT ORENEN	Gittle Office	MIT OBEREN	OHNE OBER	
	Cr.r.l.Zhh	6n.kh.Zk.K	Garl ZEN	GREAZEN	
WITTHICHT JAG	248	248	248	248	
SERARH LABORE	15	15	15	15	
12. 1 tal. 13. 1	3	3 .	3	3	
Will D'Eachle	5	5	5	5	
STATISTIK CHNE	GRENE GRENZER	N:	•		
STALLANDARA.	5.62367	5.62687	6-11382	6 • 115 62	
BE WERTE	'n	2	2	5	
ARL .>FARICH ID	<u>2</u>	2	z	2	
PAZ. ANA.	-22-225	-22.225	-23.3168	-23-3188	
January AlT	Shankh GakhZEI	:			
UTALLINGLASS	7.69548	7 -89548	6 • 64146	8.64146	
BE . TEATE	8	ಕ	7	7	
A3>FARTON 10		2	2	2 .	
YAX. AB	-22.225	-22.225	-23.3188	-23.3188	

hm. 8 VARIATION DER PARAMETER

	AUS	VON	BIS	STE
115.0m i Jr 1956	248	235	250	1
UEDANG SERJIG	15	Ø	Ø	Ø
FITELHET.	3	Ø	ω	Ø
llabbedCnl.	5			<i>(</i> 2)

	r IT HOEHENKOMMERTUM		OHNE HOEHENWORKERTUR		
		OHLE OBELE			
	CHELZEN	Garle ZEN	GLENZEN	GHENZEN	
11	240	243	243	243	
Jan 22 24. 31.61	15	15	15	15	
	ઉ	3	3	3	
71. u(z=1.5*	i.	5	5	5 ;	
1117 Cn:2	CSELLE CREIZE	N.			
• ﴿ يُعْدُن مُن الْمُعَالِقِينَ مِنْ مُنْ الْمُعَالِقِينَ الْمُعَالِقِينَ الْمُعَالِقِينَ الْمُعَالِقِينَ الْم	3.13737	3.76579E-82	-361154	-361154	
andre e e describi		2	2	2	
1. See > 2. 12 Time 12	4	ź	ខ	2	
5-6- A-1-	-18.5762	-15.293	-16.0933	-16-0933	
LTALIELIA KIT	GBELLEN GRENZEN	V			
JANUALLADA.	7-1331	7.19272	7.3996	7.3996	
Trille NERTE	8	7	7	7	
1. The State Can 12	ં	2	2	2	
នាក់ស្តី ៖ "អំពីទី៖ »	-18.5762	-15.293	-16.0933	-16.0933	

NR. 8 VARIATION DER PARAMETER

STATISTIK OHNE OHERE GRENZEN STANDARDABE. •542701

STATISTIK MIT OBEREN GREKKEN STANDARDARW. 2.30366

ABh. > FARTOR ID 2 .

55

ó

-4-6597

-4.6097

BEN. WERTE

MAX . ABW .

BEN. WEATE

MAX - ABW -

ABW.>FARTOL 10 3

WINDAIGHTUNG UEDERHGEHUNG WETTERRAT. WINDCESCHW,	AUS 248 15 3 5	VON BIS 235 256 0 360 0 0	STEP 1 1J 0	
	MIT HOERENKOAR		CHAE HORHENKO	
•	MIT OBENEN GRENZEN	GHENZEN	MIT GREAEN GREAZEN	Ohke Chene Gabkübk
WINDHIGHTUNG	240	243	243	£43
UEBERHOEHUNG	1 ປ	U	J	O
WETTERKAT.	3	3	3	3
WINDGESCHW.	5	5	5	5
STATISTIK OHNE	OBERE CRENZEN			
STANDARDARV.	3.11994	Ü	•272767	-272767
BEN. WEATE	2	2	2	_1
ADW.>FARTOR 13	2	2	2	2
MAX . ABW .	-18.5745	-15.2159	-15.864	-15.004
STATISTIK EIT	OBEREN GRENZEN			
STANDARDABW.	7 • 13275	7 - 1 8 7 6	7-36135	7.36136
BEN. WERTE	В	7	7	7
ABW.>FAKTOR 10	_	3	3	
. MAX - ABW -	-18.5745	-15.2159	-15.004	-15.6E-
				1
		•		
Nn • 8				١
VARIATION DEA	PARAMETER			1
				•
	AUS	VON B13	SikP	
VINDMICHTUNG	248	235 250	1	
UEBERHOEHUNG	15	2 333	13	
WETTERKAT.	3	2 6	1	
WINDCESCHW.	5	2 0	เป	
	J		Ü	
	MIT HOEREMHORK	EA PID	CHAE HUEFEARC.	
	MIT ODEAEN	OHNE ODERE	MIT CBELEN	Chia Chara
	GRENZEN	GRENZER	G.ELZEN	GE.N.Z.E.I
WINDATCHTUNG	240	243	245	Uso
Unidenticandes	1.0	j.	Ü	2
WETTELMAT.	Ġ	3	ó	4
WINDGESCHW.	5	5	5	, 5
		-	•	-

2

-15.2159

7.1878

-15-2159

7

3-10476

-13-4799

3.16476 1

2

-2

-13-4799

2-478505-02

2

-26.0506

12-260

9999999

7

-4

								•	
NA. 9 VARIATION DER	PARAMETER				NR • 9				
					VARIATION DEA I	PARAMETER			
	គមន	VON BIS	STEP						
11.210/101.C	23i.	હ હ	Ø			Aus	VU. 515	STEP	
LETIEL, PATE	4	υ; ω	ຜ		WINDAICHTUAG	230	200 300	2	
URBane CARULG	89	e ø	vi ·		WETTERKAT.	4	2 6	1	
INDGESCHE.	4.7		6)	•	UEBEAHOEHUNG	26	3 6	J	
			·		WINDGESCHW.	4.7		อ	
	MIT HOEHENKO MAT OBELEN GARLARK	GAELZEN	OHNE HOEHENI MIT OBEREN GREEZEN	KORREKTUR OHME OBERE GASWZEN		HIT HOEHENROR HIT OSEALN	CHARL ONE.LE	Chika mčarki). MIT CIENKS	بمعدث عالية
						CLENZEN	GAERZER	G.ENLEL	Calland
·II Filiumi / 6	23.7	. 533	239	234					
Elikarai.	4	4	Z _i	4	k 1 N Day 1 CH TUNG	246	246	246	25
TITTE SEE SEE U.C	≥	23	20	ខម	WETTERRAT.	2	2	귈	خ
II IN EDOFA.	4.7	4.7	4.7	4.7	UEBEALCEHUNG	20	20	23	ن پ
TATILITY CHIE	CONTRACTORNAL	••			LINDGESCHW.	4.7	. 4 . 7	4.7	-i • 7
Tribhinati	3.65141	3.69141	3.75759	3.75759	STATISTIK CHNE	OBERT CLEVES		•	
All . Whate	9	9	9	9	STANDANDAN.	.261131	251131	.272519	.27d919
N>F. /TC.: 13		ó	6		BEN - White	9	. •201131	9	9
istra di dia	-9.76525	-9.76529	-10.2195	6		0	3 3	1	i
15 7	-3.16323	+y • 1052y	-1K -8195	-13-2195	ABW.>FARTON 10			-	-
TATISTIP MIT	name or or many m				MAX . Alik .	97147	97147	-1-02123	-1-02123
TALLAMBARK									
	3.69141	3.69141	3.75759	3.75759	STATISTIK MIT				
al. Lange	9	9	9	9	STANDAL DABW.	•281131	.281131	-272919	.272919
EL->FAYTCH 10		6	6	6	BEN. WEATE	9	9	9	9
.eJ. = ABN =	-9.76529	-9.76529	-10.2195	-10-2195	ABW.>FARTOR 10	Ð	Ø	1	1
					MAX. ABW.	97147	97147	-1.02123	-1.02123
n. 9 ANIATION DEA 1	PAAANHTEN				Nic 9	NA LANCOSTO			,
	AUS	11500 510	1		VARIATION DER 1	Printer Len	•		
Thin i de l'UliG	238	VON BIS	STEP			A 11. 1	11.15 D.1.C	an angles	
ETTELPAT.		200 300	2			AUS	VON BIS	STEP	
	4	ខ ប	ย		MINDMICHTUMC	230	250 350	2.	
ERELEURISTE	20	z o	Ø		WETTERKAT.	4	2 6	1	
HautauCht.	4.7		ប		UEBERHOEHUNG	20	อ รถิก	1.0	
					WINDGESCHW.	4.7		⊌	
	MIT I GEHENKO		CHNE HOEHENK						
	LIT CHEMEN	OHAL ORLAE	MIT OBEREN	OHNE OBERE		MIT HOEHENKON		OHNE HÖEHENK	
	Chenzhn	GHENZEN	GRENZEN	GREAZEN		MIT UBEREN	OHNE OBEKE	EIF OBELER	Chia Gban
						GAENZEN	GAENZEN	GAFAZEN	GLERAEN
	24.C	246	24ú	246					
• ﴿ وَالْمُواكِمِينَا مِنْ الْمُواكِمِينَا مِنْ الْمُواكِمِينَا مِنْ الْمُواكِمِينَا مِنْ الْمُواكِمِ	4	4	4	4	WINDLEIGHTORG	246	246	246	46
الأبلا بكم المعتارة	دے	23	20	20	WETTEALAT .	8	2	뫋	ے
ili ikudele	4.7	4.7	4.7	4.7	DEGENERATION	170	176	13.5	130
	,				WINDGESCHW.	4.7	4.7	4.7	7
ANIAS SELECTION									
KILLANDABY.	1.16323	1.16303	1.1961	1.1961	STATISTIK OHNE				
SII. LEMIE	9	9	9	9	STANDARDABW.	• 2039	.2039	•.125J14	-112501-4
A • > \$7 \$ 17 kg 10 i	4	4	4	4	BEN. WEIGTE	y	9	ý	y
oz. • Asia. •	-2.8827	-2.8827	-2.97696	-2.97696	ABW.>FARTOR 10	1	1	1	1
WILPILM WIL C	TREAL CARREST				WAX - ABW -	-1.06064	-1-06084	-1.13741	-1.13741
irialisatri villi. U Iriliansi Disbla	uenen unenzen 1.16333		1 1041		property and account to the com-	A			
		1 - 1 6 3 3 3	1.1961	1.1961	STATISTIK KIT		2.3.14	3.35 13.6	0.0
hii - 12.12	9	9	9	ý	STANDARDABW.	•B039	·8039	.225014	.225014
A.>FARTON 13	4	4	4	4	BEN. WELTE	9	9	9	ب
17. 1. 1.	-2.822 7	-2.8827	-2.97696	-2.97696	ABW->FARTOR 19	1	1	1	i

-2.8827

-2.97696

-2.97696

-1 -06064

-1-13741

-1.06384

ABW->FAKTOR 19 1

MAX . ABW .

-1-13741

i

ia. 9 Valiation der	BALLANTTED				Nit • 9				
. VALIBATUL DES	Petrit, St far		,		VARIATION DER	PARAMETER			
	ACC	VOM BIS	STEP			AUS	VON BIS	STEP	
1. 11 J! Ch. TUNG	ಚಚಿತ	z 0	٥		WINDRICHTUNG	230	200 300	2	
UESEL.KCEHUNG	23	0 0	0		UEBERHOEHUNG	20	5 300	13	
lettellat. Tileteory.	4. 4.7	3 3	ខ ប		WETTERKAT:	4	ن ن	ອ	
	4.1		ט		WINDGESCHW.	4.7		ง	
	NIT HOLHELKO.	_ 101/2/2013	OHNE HOEHENK	Out to the market					
	MIT CHEMEN	OHNE OBERE	LIT OBEREN	OHNE OBENE		MIT HOEHENKOM		CHILE HOEHENE	
	Chanzen	GMENZEN	GRENZEN	GALAZEN		EIT OBENEA GRENZEN	GHNE OBERE GRENZEN	MIT OBEAEK GRENZEN	ChNE Chamb GabhEbN
11. 010,,701.6	230	233	233	230					
01.74.11.01.64.11.6	20	22	28	20	WINDRICHTUNG	246	246	246	د ن
117111111	4	4	4	4	JEBERHCEHUNG	80 4	ი ე 4	0 4	0 4
والأطرون والمرادية الأوالة	4.7	4.7	4.7	4.7	WETTERKAT WINDGESCHW.	4.7	4.7	4.7	4.7
2 304 734 600	n one o company				WINDGEDONW.	4.7	407	4.,	4.7
	E CBELE GLENZEN 3.69141	3.69141	3.75759	3.75759	STATISTIK OHNE				
Hall. AnnTE	9	9	9	9	STANDARDARW.	1.15342	1.15342	1.19378	1.19372
Asia>>AKISE 1	3 6	6	6	6	BEN. WERTE ABW.>FARTOR 10	9 4	9 4	9 4	4
PAM: TALL:	-9.76529	-9.76529	-10.2195	-10.2195	MAX. ABW.	-2.92271	-2.92271	-2.95029	-2.95329
7271 2712 517	GBEREN CAENZEN								
1.14. 2/1.21.21.21.	3.65141	3.69141	3.75759	3.75759	STATISTIK MIT		1 15513	1 16 200	
ALI: LEATE	9	9	9	9	STANDARDABW. BEN. WERTE	1.15342 9	1 • 15342 9	1 - 19372 9	1 • 19572 9
ABN.>FARTCA 1:		6	6	6	ABW.>FAKTOR 10		4	41	4
YAZ. AB.	-9.76529	-9.76529	-10.2195	-10.2195	MAX - ABV -	-2.92271	-2.92271	-2.95029	-2.95029
									C
LLA 9 VARIATION DEN	PALAMETER				Nit • 9				~ - -
					VALIATION DER	PARAMETER			1
	AUS	VON BIS	STEP			AUS	VOs 613	Sira	
linemidh.dhG Desembehdmo	233 23	223 330 6 0	3 2		WINDKICHTUNG	230	200 500	d	
AETTEMANT.	4	υ ο	Ø		UEF-FALHOEHUNG	20	อ 3คค	10	
AILDCEAUNG.	4.7		Ø		WETTERKAT.	4	2 6	1	
					WINDGESCHW.	4.7		ਹ	
	MIT HUMMELRON	nEKTUn	OHNE HOEHENK	Ordinali Tuli.				51 1115 11 51 11 1 1 1 1 1 1 1 1 1 1 1	
	MIT GSEMEN	OHITE OBERE	MIT OBEREN	OHAE OBERE		MIT HOEHENKOM MIT OBEMEN	OHAR OSENE	OHNE HOEHEAR	Unnerton Unia Chene
	G.LENZEN .	GHEWZEN	GLERZEN	GENZEN		GHENZEN	GribNZEN	GAENZEN	Carbbb.
VILLAICHTILG		246	246	246		CALLET LE LE	(3.21.201	W. 12.71.10.21.	
VENEMI CENTRO	246 28	246 20	246 20	50	WINDRICHTORG	246	240	c46	246
VALTAMIAT.	/ _i	4	4	4	UEBELLHOEHUNG	8543	ងប៊	IJ	١.
51	4.7	4.7	4.7	4.7	WETTERS AT .	5	22	2	i.
				4	WINDOESCHW.	4.7	4.7	4.7	-; • 7
	E OBERE GRENZEN	1 16282	1.1961	1.1961	STATISTIK OHNE	OBENE GRENZEN			
uya, brababab. Sali e Banka	1 - 1 6303	1.16303	1.1201	7.1961	STANDARDARK.	•243385	-243385	-2-3516	-203516
ASI.>>AATOM 12	-	4	4	4	BEN. WERTE	9	9	ý	ب
M.Z. Abk.	-2.8827	-2.8827	-2.97696	-2.97696	ABW.>FARTOR 10	992594	.) 992594	1 +1.33715	1 -1.03715
	cer in Cutharn				MAX • ABW •		+ 9 9 2 3 9 4	-1.00113	-1100113
UTALISTIK MIT	GBEARN GRENZEN 1-16303	1.16303	1.1961	1.1961	STATISTIK MIT				,
121. 121.12	9	9	9	9	STAMDARDABL.	<u>.</u> 2433a5	-243355	·26.3316	-263510
ADD. **FARTOR 13) 4	4	. 4	4	BEN. WEATE ABW.>FARTOR 18	ອ ວ	ب ع	y ,	9 1
MAK. ABL.	-2.8827	-2.8827	-2.97696	-2.97696	MAX. ABW.	992594	992594	-1.03715	-1.03715

PARTITION DER	PARAMETER
	AUU
Lindhichtune	243
LETTELKAT.	4

4

Ma. 18

UEBELHCEHULG

WINDGESCHW.

	MIT HORHERMO	INEXTUR	OHNE HOEHENKORNERTUN		
	MIT CRELEN	OHNE OBERE	MIT OBEREN	OliNE OBER	
	GLELZEN	GMENZEN	GRENZEN	GRENZEN	
ATHUMICHTUNG	248	249	240	240	
Total Care	4	4 .	4	4	
كالباز المقار المتعادمات	43	4:5	46	40	
WILLCESCHI.	4	4	4	4	
STATISTIC CHIE	. GSERE GRENZEI	ý.			
a TVIII DAMBARIA	2.59191	2.89191	2.87103	2.87123	
BELL: 12.12	7	7	7	7	
ATTA->PARITA 15	ے ا	2	2	2	
YAZ. ALV.	-7.54132	-7.54132	-7.59905	-7.59905	
STATISTIK KIT	CREMEN CHELZER	Š			
aliandania.	2.89191	2.89191	2.87103	2.67103	
Sall. VERTE	7	7	7	7	
Adhoration 10	દ	2	2	2	
DAK. ABU.	-7.54132	-7.54132	-7.59905	-7.59905	

VOI.

Ø

C

313

Ø

ß

Ð.

SIEP

Ø

Ø

Ø

Ø

MR. 12 VALIATION DER PARAMETER

	AUS	VON	B15	TEP
- ILLICHT JLG	243	283	322	2
LETTERNAT.	4	a	o	Ø
Janah Jahunc	40	Ø	ø	ΰ
WILLCESONW.	4			C1

	MIT HOEHERMON	rektur	OHNE HOEHENKOMEKTUM		
	NIT CHAMEN CHENZEN	OHLE GREKE GRENZEN	MIT GREAEN GLENZEN	OHNE OBERE GRENZEN	
VINDAIGHTURG	256	2 56	256	256	
Said Share Age	í,	4	4	4	
January Shri UniG	48	43	40	46	
Allocations.	4	4	4	4	
L.AMIL.IN CHIE	GREAT GRENZEN				
والأشريكينيات الكائرات		•8278 0 5	.829095	.829395	
Sair 18.73	7	7	7	7	
A > Fr. Mailm 13	ટ	ź	ä	:	
Mark of the o	-1-88955	-1.88955	-8.02555	-X:02555	
STARRIETE MIT	ORRHEN GRENZEN				
Sail Section 14.	.027805	•8278W5	•829W95	• 67967P	
Pai . Armia	7	7	7	7	
ABLORARION 10	×	8	×	ż	
Sale is the	-1.60955	-1.88955	-8.00555	-2.02555	

NR. 10 VARIATION DER PARAMETER

ABR. PRATO: 10 0 MAN. ARR. -.:

ABW.>FAKTOK 10 D

MAX . ABW .

-.519624

-.519624

STATISTIK MIT OBEMEN GRENCEN STANDARDARW. .166347 BEN. WERTE 7

VALUATION DER	PAREFELLE				
	AUS	VON E	315	Sir#	
WINDRICHTUNG	240	200	3,441	건	
WETTEREAT.	4	2	6	1	
UEBERHOEHUNG	40	Ø	Ø	υ	
WINDGESCHW.	24			Ø	
	MIT HOLHENKORE			OHRE BOHERS	
	MIT OBEREM			MIT OBEREN	
•	GHENZEN	CRENZE	v	GRENZEN	bhehZEN
VINDALCHTUNG	256	256		2:56	856
WETTELKAT.	2	2		2	V
UEBERGIOEHUNG	40	40		43	40
WINDGESCHW.	4	4		4	4
STATISTIK OHNE STAEDAADABW.	OBERE GRENZEN	.24063	i.	•216237	.2162.7
Bra. Weale	7	7	•	7	7
ABL.>FARTOL 10		ú		.;	Ü
	413317	4133	7	436563	436563
	ODENEN CHENZEN			0.1000	, , , , , , , , , , , , , , , , , , , ,
STANDARDASK.	-2258 7	-22063	38	.215237 7	-2102.7 7
BEE. WEATE ABW.>FAKTOR 19	•	7 ປ		,)	,;
MAX. ABW.	413317	- •41331	12	- • 436563	
	- • • • • • • • • • • • • • • • • • • •	- 14133	. ,	- •436363	-4433363
					ļ
					\forall
NR • 16					<u>∞</u>
VALIATION DEA	PARAMETER				1
					,
	AUS	VOR 1			
WINELICHTONG	240	ಚನಿತ		خة	
WETTERKAT.	4	ഥ	6	1	
UEBERHOEHUNG	40	ø	360	ن 1	
WINDGESCHW.	4 -			Ü	
	MIT HOEHENRORH			CHNE HOEHENN	
	MIT GUENEN			NIT CHEREN	
	Grebber, EN	UMERZE	٠,	G.E.E.I.E.N	G.FALER
WIEDALCHTUNG	256	256		256	456
WETTERNAT.	2	2		2	3
DEBMAROERUNG	160	16.3		15	153
WINDGESCHW.	4	4		4	4
CONTRACTOR ASSESSED	ODAL E CURSENS				
STATISTIK OHNE STANDANDARW.	•166347	-16634	,	•17z5z6	•172526
BEN. VE.TE	*106347 7	7	. /	112250	•172526 7
Onthe Salar War 1 13		•		•	′

--519624 /

.166347

-.5196..4

7

U

-.602496

.172520

-,0000450

7

.172526

NA+ 18 VANIATION BEA	Paaamet ea				NR. 10 VARIATION DER	PARAMETER			
WILLLICHTUNG UEDELNCENUTG WEITERMAT. WINDCHUCHW.	f.U3 248 43 4 4	VON BIS Ø Ø Ø Ø Ø Ø	STEP Ø Ø Ø		WINDMICHTUNG UEDEMHOEHUNG WETTEMHAT. WINDGESCHW.	AUS 240 40 4 4 4	VON BIS 200 300 0 300 0 0	STEP 2 1.0 0 6	
	MIT HOLFERMOLL MIT OBLIEL CLEIKEL	EFTOR CHIE GEERE CLEEZEN	OHNE HOEMENK WIT OFFICEN GLENZEN	OLLERTUR GHAE OBERE GHENZEN		MIT HOEHENKOR MIT OBEAEN GRENZEK	KEKTUR OHNE OBERE GRENZEN	OHNE ACEHENKO MIT OBEMEN GMENZEN	MMERTUR CHNE CBERE GWENJEN
Winderstand UR Limber 5 to 1811 in 1814 1811 Eddes	246 43 4 4	248 43 4 4	240 40 4 4	24:9 4:1 4 4	WINDAICHTUNG GEMEAHOEBUNG WETTEMBAT. WINDGESCHW.	256 250 4 4	256 250 4 4	256 &32 4 4	256 232 4 4
STATISTI ONIE STATISATIONESS PER- SERIE THE PERIOD 18 PER- APE-	2.80101 7	2.89191 7 2 -7.54132	2 • 87 10 3 7 2 -7 • 5 9 9 0 5	2.87123 7 2 -7.59905	STATISTIK OMME STAMBALDADA. DEN. WERTE ABW.>FAKIOR 10 MAX. ADW.	•617264 7	•617264 7 5 -2•25436	.671923 7 5 -2.6193	-673922 7 5 -2-6393
STATISTIA MIT STATISABASS. BAN ARTH AST.>FARTOR 10 NAX. ABY.	OREMEN GRENZEN 2-89191 7 2 -7-54132	2.89191 7 2 -7.54132	2.87103 7 2 -7.59905	2 • K7 103 7 2 -7 • 59905	STATISTIK MIT STAMBAADADW. DEN. WENTE ABW.>FARTON 10 MAX. ABW.	•617264 7	•617264 7 5 -2•29438	.678922 7 5 -2.6593	•672922 7 5 3 -2•6393
ha. 18 Vaniolich EAR	PAnhl.ETEn				NH. 10 VARIATION DER	PALAMETEK			-D9-
ATRILLICHTUMG UAFRIRMELHUNG AETTILLMALA ATRILUGEUSHIA	A35 243 43 4 4	VON HIS 200 300 8 0 9 0	STEP 2 3 0 0		WINDRICHTUNG UEDERHOEHUNG WETTERRAT. WINDGESCHW.	AUS 240 46 4 . 4	VON BIS 200 300 0 300 2 6	STEP 2 15 1 0	
GAFAAN CANGNO NETTALA A. •	24.; 4.; 4	8 0 8 0 880 390	೧ ನ ನ	OMMENTUM UNNE OBERE GMENZEN	UEBERHGEHUNG WETTERHAT -	240 46 4.	233 300 0 333 2 6	2 10 1	Namert Ja Chal Chere Glenden
GAFAAN CANGNO NETTALA A. •	245 45 4 6 ELL HORFENKORH MIT OBEREN	EKTUR OBNE OBERE	OHNE HOEHENKO	Ohke Obere	UEBERHGEHUNG WETTERHAT -	240 40 4. 4 NIT HOEHENKOR MIT OBEREN	200 300 0 300 2 6 CERTUR CHAL OBERE	2 15 1 0 OHNE HOEHENHO MIT CBEALN	CHAL COEME
Winderford and Winderford and Canada and Can	24.5 4 4 KIT HOMFENKORH MIT OMEREN GRANZEN 256 4.5 4 4	200 300 B O O O O O O O O O O O O O O O O O O	OHNE HOEHENKO MIT OHEHER GRENZEN 256 40	UHRE OBERE GRENZEN 256 40 4	UEBERMGERUNG WETTERMAT. WINDGESCHW. WINDALICHTUNG UEBERMOEHUNG WETTERMAT.	240 40 4. 4 MIT HOEHENKORF MIT OBEREN GHENZEN 256 250 2 4 OBERE GRENZEN 23052 7	200 300 0 300 2 6 KEKTUH CHRZ OBERE GRENZEN 256 250 2	OHNE HOEHENHO MIT CDEALN GHENZEN 256 233 2	CHAL CBEAE GHENZEN 256 230 2

1 2					Nn. 2				
VARIATION DES	PALAKET En				VARIATION DEN	PALIAMETEA			
	ಗರಿತಿ	Vos. BIS	STEP						
\$110F\$370	೭೬5	៤ ប	Ø			กบร	VCX E13	υŢŁF	
727. A A	4	ម ស	c		WIRDHICHTUNG WETTERMAT.	21.5 4	233 273 2 6	2 1	
الفرائي المرازي والمنازي	40 40	. ຍ ຜ	Ø		UEDERHOLHONG	20		Ĵ	
WillCluckk.	4.5		Ø		WINDGESCHW.	4.5	5 0	Š	
	MIN AUERELAU	Likki Jn	OHNE HOEREKE	Oriental Taler					
	MIT CHELL.	Onlar GBrakE	MIT OBEREN	OHNE OBENE		MIT HOMHENKON	MERTUM Onke OJEME	CHNE HÖEHENK MIT OBENEN	Charua Char. CdEa
	Calbillana.	GREAZEN	GriENZEN	GEENZEN		MIT OBERER CRENZEN	Grenden	GREENEN	Galai Sali
Withdrafenia d	ers	265	೭೬5	285			0.10.10.0		
* Fit * Fit * Fit *	4	4	4	4	WINDLICHTUNG	230	230	242	Loc
Uhnkannann Uld	20	20	20	20	WETTELMAT.	2	2	б	٠
Willians CHW.	4.5	4.5	4.5	4.5	UESERHOEHUNG	23	57	ال.تع	2.
					WINDCESCHW.	4.5	4.5	4.5	4.5
	E CHERE GLEVEN 2.34416	% 2.34418	2.35569	2.35569	STATISTIK OHNI	E OBERE GRENZEN	1	•	
Dinimina 55. Sin Sania	2.34410	5.24419	2.35569	2.35569	*WEND.ALANTE	•145478	.145478	·253726	-15557
: 50k • > restitut 1		<u>۔</u> ن	3	3	BEN. WEATE	3	3	ä	ن
17X - ABL -	999999	999999.	599999.	999999•	ABW.>FARTOR 10		J	3	Э
					MAX. ABW.	42921	- • 42921	-2.59183	59195
	CHEREN GRENZES				CUADICETE DIE	CCEREN CHENZEN			
	2.34418	2.34418	2.35569	2 • 35569 2	STANDALLARV.	•351969	•351v69	•253726	-363327
- El • TenTh ABV•>FASTOn 1	2 ن 6	2 6	ਮ 6	6	BEN. WEATE	9	9	3	9
hax. Aak.	999999.	999999.	999999•	999999•	ABW.>FAKTOR 16	2	2	5	2
	*******		******		MAK. ABW.	999999.	999999•	999999•	999999.
									1
la. è									
									.
	DATANETYA				NR • 2				Ž
VARIATION DEA	PALAMETER				NR. 2 VARIATION DER	PALALETER			. 070
	PALAMETER	V0:: BIS	STEP						0
VARIATION DEA	ກປ່ ວ 285	203 270	ខ		VARIATION DER	AUS	VON BIS	STEP	70
VARIATION DEA Varianida (Scio Variana Ale	7.715 285 4	233 27 0 0 8	2 0		VARIATION DER	AUS ខស5	200 2 7 0	2	10
VARIATION DEA Virulia Funda Valida Fanda Sulfala Chaung	かわ 285 4 23	203 270	2 0 0		VARIATION DER WINDMICHTUNG WETTERMAT.	AUS 285 4	200 270 2 6	2 1) 0
VARIATION DEA Varianida (Unio Variana Ali	7.715 285 4	233 27 0 0 8	2 0		VARIATION DER	AUS ខស5	200 2 7 0	2) 0
VARIATION DEA Virulia Funda Valida Fanda Sulfala Chaung	かわ 285 4 23	233 27 0 0 8	2 0 0		VARIATION DER WINDHICHTUNG WETTELKAT. UEBERHOEHUNG	AUS 265 4 20	200 270 2 6	2 1 10) 0
VARIATION DEA Virulia Funda Valida Fanda Sulfala Chaung	かわ 285 4 23	239 270 0 3 0 9	Ontor: HOERENK		VARIATION DER WINDHICHTUNG WETTELKAT. UEBERHOEHUNG	AUS 265 4 20 4+5	200 270 2 6 0 309	2 1 10 0	
VARIATION DEA Virulia Funda Valida Fanda Sulfala Chaung	MID 285 4 20 4.5 MIN MORHENEON MIT OBEREN	209 270 0 0 0 0 0 0 unektor Ghie Obere	Onion HOERENK	OHER GIRERE	VARIATION DER WINDHICHTUNG WETTELKAT. UEBERHOEHUNG	AUS 285 4 20 4.5	200 270 2 6 0 300	CHAE HOEHENF	
VARIATION DEA Virulia Funda Valida Fanda Sulfala Chaung	1735 2835 4 23 4.5 24.5	239 270 0 3 0 9	Ontor: HOERENK		VARIATION DER WINDHICHTUNG WETTELKAT. UEBERHOEHUNG	AUS 285 4 20 4.5 MIT HOEHENKOA MIT ODEHEN	200 270 2 6 0 300 AMERTU CHME_OBEAE	2 1 10 0 CHAE HOERENF MIT OBEREA.	CHAE CHEAL
VARIATION DEA kroundstool lengenate Cotemporation kropgeschie	ETA MORHENKO ETT OFFICE CARLACT	209 270 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Onto: HOEHENK MIT OBEREIN GRENZEN	OHLE ODERE GRENZEN	VARIATION DER WINDHICHTUNG WETTELKAT. UEBERHOEHUNG	AUS 285 4 20 4.5	200 270 2 6 0 300	CHAE HOEHENF	
WARIATION DEA WITCHILLIGHTON TO THE FEMALE DUTELHOUSE ONE WINDESSORY	MID 285 4 20 4.5 MIT MORHEMRO DIT GERMANN CARLARD	209 270 0 0 0 0 0 0 UNEXTOR CHIE OBENE GREAZEN 238	Other HOERENK MIT OBERER GREAZEN	OHER OBERE GRENZEN 238	VARIATION DER WINDHICHTUNG WETTELKAT. UEBERHOEHUNG	AUS 285 4 20 4.5 MIT HOEHENKOA MIT ODEHEN	200 270 2 6 0 300 AMERTU CHME_OBEAE	2 1 10 0 CHAE HOERENF MIT OBEREA.	CHNE CHEVE GRENZEN 20a
VARIATION DEA Withdistant Control Date mandading Windeschwa	ETA MORHENKO ETT OFFICE CARLACT	209 270 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Onto: HOEHENK MIT OBEREIN GRENZEN	OHLE ODERE GRENZEN	WINDAICHTUNG WINDAICHTUNG WETTELKAT. UEBERHOEHUNG WINDAICHTUNG WETTELGAT.	AUS 285 4 20 4.5 MIT HOEHENKOA MIT OBEHEN GRENZEN 238 2	200 270 2 6 0 300 MENTUL CHEE OBEAE GRENZEN 238	2 1 10 0 CHAE HOEMEN, MIT ODEREN, GLENMEN 240 6	CHNE CHEVE GRENZEN 138 1
WARIATION DEA WITCHILLIGHTON TO THE FEMALE DUTELHOUSE ONE WINDESSORY	MID 285 4 20 4.5 MIT MORHENKO (MIT GORNEN CHALLEN) 235 4	209 270 0 0 0 0 9 UNEXTOR CHIE OBENE GREAZEN 238	Object HOEHENK MIT OBEREIN GREAZEN 240 4	OHAE OBERE GRENZEN 238 4 ~	WINDATCHTUNG WETTELKAT. UEDEALOGHUNG WINDATCHTUNG WETTELGAT. UEDEALOGHUNG WINDATCHTUNG WETTELGAT. UEDEALOGHUNG	AUS 265 4 20 4.5 MIT HOEHENKOA MIT OBEHEN GHENZEN 238 2 70	200 270 2 6 0 300 MAENTOL CHME, OBEAE GMENZEN 238 2	2 1 10 0 CHAE HOEHEN MIT ODEAEN GLENYEN 24J 6	CHNE CHEVE GRENZEN 135 1 1
WARIATION DEA WINDHIGHTON DEA WINDHIGHTONG WINDHIGHTONG WINDHIGHTONG WINDHIGHTONG WINDHIGHTONG WINDHIGHTONG WINDHIGHTONG WINDHIGHTONG	MID 285 4 20 4.5 MIT MORHEMRO DIT OFFICEN CHALLARIT 235 4 20 4.5	203 270 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Onto HOERENK EIT OBEREN GREAZEN 243 4	OHEE GERE GRENZEN 238 4 - 20	WINDAICHTUNG WINDAICHTUNG WETTELKAT. UEBERHOEHUNG WINDAICHTUNG WETTELGAT.	AUS 285 4 20 4.5 MIT HOEHENKOA MIT OBEHEN GRENZEN 238 2	200 270 2 6 0 300 MENTUL CHEE OBEAE GRENZEN 238	2 1 10 0 CHAE HOEMEN, MIT ODEREN, GLENMEN 240 6	CHNE CHEVE GRENZEN 138 1
VARIATION DEA Affiliation Claimenand Claime	AUD 285 4 20 4.5 MIT MORHENKO MIT GÖRNEN CHALZAN 235 4 20 4.5 K GIRNA GRENZEN	209 270 0 0 0 0 0 9 MERTOR CHIE OBERE GREAZEN 238 4 2.0 4.5	Ontor HOERENK MIT OBEREN GREAZEN 240 4 20 4-5	OHER GRENZEN 238 4 - 20 4.5	WINDAICHTUNG WETTELRAT. UEBERHOEHUNG WINDAICHTUNG WETTELRAT. WINDAICHTUNG WETTELRAT. UEBERHOEHUNG WINDAESCHW.	AUS 285 4 20 4.5 MIT HOEHENKOA MIT OBEREN GRENZEN 238 2 70 4.5	200 270 2 6 0 300 MENTUL. CHEE OBEAE GMENZEN 238 2 0 4.5	2 1 10 0 CHAE HOEHEN MIT ODEAEN GLENYEN 24J 6	CHNE CHEVE GRENZEN 135 1 1
WARIATION DEA WITCHIGHTON D TEMPERATED TO WITCHIGHTONE	MID 285 4 20 4.5 MIN MORHENEO, MIT OBEREN CHALANT 235 4 EU 4.5 E O MALA CHENZER 1.03544	209 270 0 0 0 0 0 0 0 0 0000 00 0000 00 00	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OHER GRENE GRENZEN 238 4 - 20 4.5	WINDAICHTUNG WETTELRAT. UEBERHOEHUNG WINDAICHTUNG WETTELRAT. WINDAICHTUNG WETTELRAT. UEBERHOEHUNG WINDAESCHW.	AUS 265 4 20 4.5 MIT HOEHENKOA MIT OBEHEN GHENZEN 238 2 70	200 270 2 6 0 300 MENTUL. CHEE OBEAE GMENZEN 238 2 0 4.5	2 1 10 0 CHAE HOEHEN MIT ODEAEN GLENYEN 24J 6	CHNE CHEVE GRENZEN 135 1 1
WARIATION DEA WITCHIGHTON DEA WITCHIGHTONG	MID 285 4 20 4.5 MIT MORHEMRO MIT OBEREN CHALZEN 238 4 20 4.5 E Orenia Chebyzer 1.03544 3	203 270 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ontor HOERENK MIT OBEREN GREAZEN 240 4 20 4-5	OHER GRENZEN 238 4 - 20 4.5	WINDATCHTUNG WETTELKAT. UEBERGOEHUNG WINDATCHTUNG WETTELLAT. WINDATCHTUNG WETTELLAT. UEBERGORHUNG WINDAESCHW.	AUS 285 4 20 4.5 MIT HOEHENKOA MIT OBEHEN GRENZEN 238 2 70 4.5	200 270 2 6 0 300 MAENTUL. CHME, OBEAE GMENZEN 238 2 0 4.5	2 1 10 0 CHAE HOEREN MIT OBEREN GLENKEN 240 6 0 4.5	CHNZ CBEAE GRENZEN 238 2 0 4.5
WARIATION DEA WITCHIGHTON D TEMPERATED TO WITCHIGHTONE	MID 285 4 20 4.5 MIT MORHEMRO MIT OBEREN CHALZEN 238 4 20 4.5 E Orenia Chebyzer 1.03544 3	209 270 0 0 0 0 0 0 0 0 0000 00 0000 00 00	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OHEE GRENE GRENZEN 238 4 - 20 4.5	WINDRICHTUNG WETTELKAT. UEDERIGOTHUNG WINDRICHTUNG WINDRICHTUNG WETTELLAT. UFBERHOLHUNG WINDRESCHW. STATISTIK OHNS STANDARDASW. BEN. WERTE	AUS 285 4 20 4.5 MIT HOEHENKOA MIT ODEREN GRENZEN 238 2 70 4.5 COBERE GRENZEN 147337 3	200 270 2 6 0 300 MRENTUL. CHEE OBEAE GMENZEN 238 2 0 4.5	2 1 10 0 CHAE HOEREN, MIT OBEREN, GLENKEN 240 6 0 4.5	CHNE CREWE GRENZEN 200 200 4.0 14.0 14.0 200 200 200 200 200 200 200 200 200 2
VARIATION DEA WITCHIGHTON DEA WITCHIGHTONE WITCHIGHTONE	### ##################################	209 270 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OHEE GRENE GRENZEN 238 4 - 20 4.5 1.93798 5	WINDATCHTUNG WINDATCHTUNG WETTELRAT. UEBERHOEHUNG WINDATCHTUNG WETTELRAT. UEBERHOEHUNG WINDATCHTUNG WINDATCHT	AUS 285 4 20 4.5 MIT HOEHENKOA MIT OBEHEN GRENZEN 238 2 70 4.5 COBERE GRENZEN -147337 3	200 270 2 6 0 300 MAENTUL. CHME, OBEAE GMENZEN 238 2 0 4.5	2 1 10 0 CHAE HOEREN MIT OBEREN GLENKEN 240 6 0 4.5	CHNZ CBEAE GRENZEN 238 2 0 4.5
WARIATION DEA WHO LITERIANAL DETERMINATE DETERMINATION DE WINDLITERIANA DE DES WINDLITERIANA DE LA STATISTIC MIT	### ##################################	203 270 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OHLE OBERE GRENZEN 238 4 - 20 4.5 1.93798 5 2 -2.92965	WINDATCHTUNG WINDATCHTUNG WINDATCHTUNG WINDATCHTUNG WINDATCHTUNG WETTLAWAY UESEANOWHUNG WINDAESCHW. STATISTIK OHMS STANDANDABW. BEN. WERTE ABW. FARTOR 10 MAX. ABW.	AUS 285 4 20 4.5 MIT HOEHENKOA MIT OBEHEN GRENZEN 238 2 70 4.5 © OBEAE GRENZEN .147337 3 0 0474669	200 270 2 6 0 302 MAENTOL CHME, OBEAE GMENZEN 238 2 0 4.5 145352 3 0 -445	2 1 10 0 CHAE HOEREN, MIT OBEREN, GLENKEN 240 6 0 4.5	CHNE CREWE GRENZEN 200 200 4.0 14.0 14.0 200 200 200 200 200 200 200 200 200 2
WARIATION DEA WINDLIGHTON D LEFER-AT. DUTERRORADING WINDLIFORTUNG WINDLIFORT	### ##################################	209 270 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OHEE GRENE GRENZEN 238 4 - 20 4.5 1.93798 5 2 -2.92965	WINDATCHTUNG WINDA	AUS 285 4 20 4.5 MIT HOEHENKOA MIT OBEREN GRENZEN 238 2 70 4.5 COMEAE GAENZEN 147337 3 1 0474669 OBEREN GRENZEN	200 270 2 6 0 300 MAENTUL. CHME, OBEAE GMENZEN 238 2 0 4.5 .145352 3 0415922	2 1 10 0 CHAE HOEREN. MIT CAEMEN. G.ENMEN. 240 6 0 4.5 .172016 3 3 -1.59459	CHNE CHEVE GRENZEN 238 2 0 4.5 145975 3 0 4412133
WARIATION DEA WITCHIGHTON D TO FEMANT. CUTALMORROUS WINDLIFORTUNG WINDLIFORT	### ##################################	209 270 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OHEE GRENZEN 238 4 - 20 4.5 1.93798 3 2 -2.92965	WINDATCHTUNG WINDATCHTUNG WINDATCHTUNG WINDATCHTUNG WINDATCHTUNG WETTLAWAY UESEANOWHUNG WINDAESCHW. STATISTIK OHMS STANDANDABW. BEN. WERTE ABW. FARTOR 10 MAX. ABW.	AUS 285 4 20 4.5 MIT HOEHENKOA MIT OBEHEN GRENZEN 238 2 70 4.5 © OBEAE GRENZEN .147337 3 0 0474669	200 270 2 6 0 302 MAENTOL CHME, OBEAE GRENZEN 236 2 0 - 4.5 	2 1 10 0 CHAE HOEHEAN MIT GLEARN GLENKEN 6 0 4.5 -172016 3 -1.59459	CHNE CHEME GRENZEN 255 2 3 4.5 -145975 3
VARIATION DEA WITCHIGHTON DEA WITCHIGHTONG	MID 285 4 23 4.5 MIN MORNENCO MIT OFFICENCE CHARLES 3 2 -2-67333 CORRECT GRENZER 1.37074 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	209 270 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OHEE GRENE GRENZEN 238 4 - 20 4.5 1.93798 5 2 -2.92965	WINDATCHTUNG WETTELKAT. UEDEAROCHUNG WINDATCHTUNG WINDATCHTUNG WETTELLAT. UEDEAROCHUNG WINDATCHTUNG WETTELLAT. UEDEAROCHUNG WINDAESCHW. STATISTIK OHNE STANDALDABW. STATISTIK MIT STANDALDABW.	AUS 285 4 20 4.5 MIT HOEHENKON MIT ODEHEN GHENZEN 238 2 70 4.5 COBERE GRENZEN -147337 3 0474669 OBEREN GRENZEN -340516	200 270 2 6 0 300 MERTUL. CHEE OBEAE GMENZEN 238 2 0 - 4.5 3 0415922 3 1 - 415922	2 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CHNE CHEAE GRENZEN 236 2 0 4.5 .145975 3 0441213;
WARIATION DEA WITCHIGHTON D TO FEMANT. CUTALMORROUS WINDLIFORTUNG WINDLIFORT	### ##################################	209 270 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OHEE GRENE GRENZEN 238 4 - 20 4.5 1.03798 5 2 -2.92965 1.38323 8 4	WINDATCHTUNG WINDATCHTUNG WINDATCHTUNG WINDATCHTUNG WINDATCHTUNG WETTELAAT. UEBEARORHUNG WINDAESCHW. STATISTIK OANS STANDAADABW. BEN. WERTE ABW. PFAKTOR 10 MAX. ABW. STATISTIK MIT STANDALDABW. BEN. WERTE	AUS 285 4 20 4.5 MIT HOEHENKON MIT ODEHEN GHENZEN 238 2 70 4.5 COBERE GRENZEN -147337 3 0474669 OBEREN GRENZEN -340516	200 270 2 6 0 302 MAENTOL CHME, OBEAE GRENZEN 236 2 0 - 4.5 	2 1 10 0 CHAE HOEHEAN MIT GLEARN GLENKEN 6 0 4.5 -172016 3 -1.59459	CHNE CHEAE GRENTEN LOS A+D -140975 3 U441213;

:	i.		
SALIA	1111	1.5	PALAKETE

	13.24	VCN	BIS	STE
NIL DID DATED.C	2 3 5	ಟ	ü	نه
Darlandadi C	ن ک	9	Ø	Ø
Later a Later at a	4	Ø	Ø	Ø
WII DemaGraw	4.5			Ø

	ETT HOMHER MORE	EK fun	OHNE HOEHENKORGERTUR		
	KIN COELEN	OHNE OBERE	MIT OBEMEN	CHAE OBENE	
	U.E.:ZE!!	GRENZEN	GRENZEN	GRENZEN	
ki manana	ಜನ ರ	235	285	275	
UE LOS DELIGIOS.	2.1	23	รย	20	
LEILEAYAI.	4	4	4	4	
WILLCEUSHW.	4.5	4-5	4.5	4.5 7	
LIATILTIK OHNE	CBERE GRENZEN				
SIMI DANDARW.		2.34418	2.35569	2.35569	
1.21 . A	2	2	2	2	
10 12.00	3	3	3	3	
MAM:	55399 9	999999•	999999.	999999•	
SINCIPLIE SIT (DELLARA CAENZEN				
	2.34418	2.34418	2.35569	2.35569	
221 • 12.72	2	2	2	2	
ABW.>FERRY L. 10	6	6	6	6	
MAX - ABY -	999999•	999999.	999999•	999999•	

ha. B Tamiatich Dem Famametem

	AUS .	VON	BIS	STEP
& ILLLAICHTUNG	255	200	270	2
CENALS, TERUILG	۵.,	ដ	ø	Ø
WETTERNAL.	4	Ø	Ø	₁₀
LICOSEDONA.	4.5			Ø

	NIT HOEHENKO	nhEXTUn	CHIVE HOEHENK	ORALKTUK
	MIT OBEMEN	OHILE OBERE	MIT OBEREN	OHNE OBERE
	G.ELZEH	GRENZEN	GLENZEN	GRENZEN
11::::::::::::::::::::::::::::::::::::	238	. 238	240	238
فالمراز والمناسب المسامل المسامل المسامل	20	22	20	2.3
. L	٤,	4	4	l;
William 22 OH 1 .	4.5	4.5	4.5	4.5
LIMITE THE	Chene Chenzel			
	1.03544	1.63544	1.19054	1.03798
Balle Walles	3	3	3	3
atta >fai fón 18	ટ	2	ટ	2
Bash - Alla	-2.6 7 333	-2.87333	-3.03186	-2.92965
ATATISTIK MIT	GBEREN GREUZE	×		
STAL SALSABY.	1.37874	1.37074	1.38307	1.36323
S.S. • WALSTE	5	ε	ઇ	ర
ASK->BARTON 13	4	4	5	4
FreX • AS a •	999999•	9999999	999999.	999999.

NR. 2 VARIATION DER PARAMETER

	AUS	VON	BIS	SiEP
WINDAICHTURG	265	203	270	2
UEBERHOEHUNG	20	ri e	300	1.3
WETTERKAT -	4	Э	Ø	it
WINDGESCHE.	4.5			,;

	MIT HORHENKO	akEKTda	OFFIE HOLHENN	Canada Y Ga
•	MIT CHEREN	OHAE OBENE	MIT CHEMEN	
	GRENZEN	GAENZZX	GHEAZ EN	GaEAFrh
WINDATCHTUNG	235	236	.34ú	235
UEBERROEHUNG	70	40	>;	43
WETTERMAT.	4	4	4	4
WINDGESCHW.	4.5	4.5	4.5	4.5
STATISTIK OHNE	OBERE CHENZER	N		
STARBAMDARK.	1.03564	1-03531	1.100.0	1.00710
Bhe. beath	ა .	3	3	3
his ->ris ion in	; ;	5	e e	: 4
MAX. ARW.	-2.95671	-2.90354	-3.27.0-	-2-59549
STATISTIK MIT	OBENEN GRENZER	N		
STANDARDARW.	1.3495	1.36187	1.37122	1.37113
BEN. WERTE	h	ь	ક	8
ABW.>FARTOR 10	4	4	4	4
MAX . ABW .	999999.	999999•	999999	9999999.
MAX . ABW .	999999.	999999•	999999	9999999.

NR. 2 VARIATION DER PARAMETER

	AUS	VON	815	STEE
WINDATCHTUNG	::c5	2.3.3	270	٤.
UEBERHOERUNG	20	•1	3	143
WETTERKAT.	1:	2	ó	1
WINDGESCHW.	4.5			r)

			_	
	N. 7. 11. 11. 11. 11. 11. 11. 11. 11. 11.			
		RMERTUM	OHILE MCEMENE	
	MIT OTHER		MIT CHEMEN	JHNE JNEAR
	GRENZEN	GI.ENZEN	CENZEN	GmENIEN
WINDARD TONG	238	ಬ ುಕ್ಕ	.43	- dc
UEBELIHOEHUNG	7.i	4.5	3. ,	
WETTERRAT.	.:	본	2	۷.
WINDGESCHW.	4.5	4.5	4+5	4.5
STATISTIK OHNE	OBERE GRENZE	Ni		
STANDALDABW.	•147337	-14593	• 440 941	-145975
BEN. WERTE	3	3	ં .	ن د
ARW.>FARTOR 18	J	ა	ن	
MAX - All w -	- • 474669	- •445296	 55579	4-1,12
STATISTIK MIT	OSENEN GRENZEI	N		
STANDARDABW.	.342516	.347228	•37dee	•36524v
BEN. WEATE	9	ý	ő.	y
ABk.>FARTO.: 10	2	2	. 2	<u>.</u>
NAX. ABW.	999999	999999.	999999	999997*

- D44-

	AUS	VON	BIS	STEP	
21	368	6	0	91EP	
VELTANZAT.	2	ä	ē	i)	
SEAEMH SEMULIC	55	2	r)	ຶ່ນ	
Willersonw.	1.6			И	
	EII HEEHLINKOM	aEkTU.		OHER HOEHENK	OnicekTür
	MIT CHEREK		OBERE	MIT GREATN	Oline, Official
	CALLEEN	Carri	EN	GRENZEN	GAENZEN
Virunium Pulk	3.70	386		300	3.70
laika (ii	2	2		2	8
or AlimikEoliG	ສຸລ	55		55	55
i ibizatnia	1.6	1.6		1.6	1.6
	Chaus GALMZEN				
Simble Daile	8.35615	8 - 05	615	8.21326	6.21326
Belle New 16 Aller FAKTOR 16	1.3	13		10	1.3
isin e zarana baka da Kamarana) 11 090000.	11	.c.c.	11	11
	397773.	9999	99.	9999999	999999.
	GRADEL GRENZEN				
i i i . Li Lubii i .	c5615	8.25	615	8.21326	6.21326
BEL. LENTE ABL.>FARION 12	12 3 13	18 13		16	16
MAX. ABL.	999999.	9999	ina.	13 999999•	13 999999.
	~				
ha. 11 VARIATION DEA					
JAMIANICH DEA	£03	VON	BIS	STEP	
VARIATION DEA VINDAICHTUAG	AU3 300	200	310	2	
VARIATION DER VINDAICHTUNG VETTERRAI	803 808 8	899 8	310 0	2 Ø	
VARIATION BEA VINDRICHTUNG VETLEAPAT. UEBEAHOEHUNG	AU3 300	200	310	2	
VARIATION DEA VINDAICHTUNG	AU3 300 2 55 1•6	200 0 0	310 0	2 Ø Ø	Ouston In 1911 o
VARIATION BEA VINDRICHTUNG VETLEAPAT. UEBEAHOEHUNG	AUS 300 2 55 1.6 NIT HOEHEEKOAR	200 0 0	310 0 0	OHNE HOEHEKK	
VARIATION BEA VINDRICHTUNG VETLERRAT. ULBERHOEHUNG	AU3 300 2 55 1•6	200 0 0	310 0 0	OHNE HOEHEKK	
VARIATION DER VIPTRICHTURG VETTERFAT• UEBERHUEHUNG VIPTCESSRV•	AUS 300 2 55 1.6 NIT HOEHEEKOAP MIT GORMAN	200 0 0 0 EKTUA OHNE	310 0 0	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	UnNel Offenb
VARIATION DER VINDRICHTUNG VETTERVAT JEBERHUEHUNG VINDRECHV VINDRICHTUNG VETTERVAT	AUS 300 2 55 1.6 MIT HOEHEEKOAFMIT GERRINEN GERRINEN 258 2	OHNE CAENZ	310 0 0	Offine Hoehenko	OHNE OREME GRENZEN
VARIATION DER VINDATORG VINDATORG VETTERRAT. VERENHOEHUNG VINDALOGEV. VINDATORIJNG VETTERVAT. VETTERVAT.	AU3 300 2 55 1.6 MIT HOEHERKOAFMIT GREEKEN GREEKEN 258 2	200 0 0 0 0HNE GRENZ 258 2 55	310 0 0	OHNE HOEHENK MIT OBEREK GRENZEN 258 2 55	OHNE OFFICE GRENZEN 2 258 2 55
VARIATION DER VINDATORG VINDATORG VETTERRAT. VERENHOEHUNG VINDALOGEV. VINDATORIJNG VETTERVAT. VETTERVAT.	AUS 300 2 55 1.6 MIT HOEHEEKOAFMIT GERRINEN GERRINEN 258 2	200 0 0 0 0 0 0 0 0 0 0 0 0 0 2 5 0 2 0 2	310 0 0	OHNE HOEHENKI MIT OBEREK GRENZEN 258	OHNE OFFICE GRENZEN 1 258 2
VARIATION DER WINDRICHTUNG WETHERFAT. UEBERHOEHUNG WINDRICHTUNG WINDRICHTUNG WINDRICHTUNG WETHERWAT. UETHERWAT. UETHERWAT.	AUS 300 2 55 1.6 MIT HOEHENKOAR MIT COEMEN GRENZEN 258 2 50 1.6 COEME CHENZEN	200 0 0 0 0HRE CRENZ 258 2 55 1.6	310 0 OHERE	OHNE HOEHENRI MIT OBENEN GRENZEN 258 2 55 1.6	Ones Offers Grenzen 1 258 2 55 1,6
VARIATION DEA WINDAIGHTUNG WETTERMAT. DEBERHOEHUNG WINDAIGHTUNG	AU3 300 2 55 1.6 N.IT HOEHERKOAFMIT GREEKEN GREEKEN 255 1.6 CALIE CHERZEN .472601	200 0 0 0 0 0HNE CAENX 258 2 55 1.6	310 0 OHERE	OHNE HOEHENKOM TO OHNE HOEHEN	Unit Office Grenzen 7 258 2 55 1,-6
VARIATION DEA VICTATORIUMG VETTERPAT. UEBERHOEHUNG VICTATORIUM VI	AUS 300 2 55 1.6 NIT HOEHENKOAFFIT GREEKEN ESE 2 55 1.6 CALLE CLEFIZEN 472601 1.1	200 0 0 0 0 0HKE CRENZ 25 1.6	310 0 OHERE	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OHNE OFFERS GRENZEN 258 2 55 1,-6 -476783 16
VARIATION DER VIDERCHTUNG VIDE	AU3 300 2 55 1.6 N.IT HOEHERKOAFMIT GREEKEN GREEKEN 255 1.6 CALIE CHERZEN .472601	200 0 0 0 0 0HNE CAENX 258 2 55 1.6	310 0 0 OHEAL EN	OHNE HOEHENKO MIT OBEREK GRENZEN 258 2 55 1.6	Unit Office Grenzen 7 258 2 55 1,-6

999999.

i... 4 .476783

999999.

16

4

•476763

599999.

10

4

STATISTIC HIT OBERAN GAENZEN STATISTIC HIT OBERAN GAENZEN -472601

Bl. • 12.72

AM . Adk .

A-1.>Farita 12 4

12

955555.

NA. 11 VARIATION DEA	PALAMETER			
VILLIANT ON DEAT				
	AUS		STLP	
WINDELICHTUNG	303	200 310		
WETTERRAT.	2	2 6	1	
UESELHOEHUNG	55	υ ε	G	
WINDGESCHE.	1 - 6		J	
	MIT HOEHENKO		OHNE HOEHUN:	
	GAENZEN	OHNE OBERE CHENCEN	MII CHEMAN CHEMEN	inhā Calab Gubhdah
WINDAICHTONG	258	255	చి 5కి	Sec
WINDATCHIOME WETTELMAI.	2	238	233	2
UEBERHOEHUNG	55	ນວັ	55	55
WINDGESCHW.	1.6	1.6	1.6	1.6
WINDGESCHW.	1.0	1.0	1.0	1.0
STATISTIK OHN			·	Service 1
STANDALDABW.	.472601	·4726J1	•476753	•4767:3
BEN. WENTE	10	13	1.:	1.3
ABh.>rAKTOn 10	999999•	2	6.6.3.36.5	2
*JEA *XAM	999999	999999.	999999 •	9999999.
STATISTIK KIT				
STANDALDADW.	472631	•472601	•476763	•4767c3
BEN. WERTE	10	10	13	15
ABW.>FARTOR 16		4	4	4
MAX. ABW.	999999•	999999.	999999.	99595°°
NH. 11 VARIATION DEM	DAMAMETER			\
VARIATION DER	PHRHMETER			;
	AUS	VON BIS	STi-P	•
WINDHICHTUNG	300	233 313		
LETTE KAT.	2	2 6	1	
UEBERTHOEHUNG	55	0 300	17	
WINDGESCHW.	1.6		J	
	MIT HOERENKO		CHAE RUEHEAF	
		OHAE GBERE		CHR.E CBERE
	GHENZEN	GAENZEN	GMEMIEN	G.,£1,J£1,
VINDRICHTUNG	258	258	258	255
WETTERKAT.	2	2	8	÷.
UEBEAMORHUNG	175	173	éü	62
WINDGESCHW.	1.6	1.6	1.6	1 - 6
STATISTIK OHM				
STANDARDAEW.		-4685	.476762	•476752
BEN. WEATE	10	10	10	13
ABW.>FARTOR 16		2	2	<u>2</u>
BAX - ABV -	999999•	999999•	9999999•	÷\$4\$\$\$.
STATISTIK MIT				
STANDARDABW.	• 4685	• 4665	.476762	•476752
BEN. WERTE	10	16	1.0	10
ABW.>FARTOR 16		. 4	4	4
NAX. ABW.	999999 .	9999999.	99999 9 •	322322.

					•				
NR+ 11 VAnIATION DER	Panak aï kis				NR. 11 VANIATION DEA	PARAMETER			
Withwist FA 6 Surgardes Mi6 Wellen AT. Withdesdaw.	A)3 500 55 8 1.6	VON BIS W W W W	STEF 3 0 0 0		WINDAICHTUNG UEDERHOEHONG WETTERKAT - WINDGESCHW.	AUS 300 55 2 1•6	VON BIS 200 310 0 330 0 0	STEF 10 0 0	
	-MIT HORHELMON MIT OURHEN GRENNEN	nkkīun Onne onere Grekzen	OHME HOEHENN MIT OBENEN GRENNEN	ORREKTUR ORNE OBBITE GLENZEN		MIT HOEHENKO NIT OBELEN GLENZEN	DANEATUA ORAE GREAE GAENZEN	CHAE HUBHER MIT CHEADA GREADA	CAMERTUA CAME COMAE GHENDEN
RILLLES SAN.	3:19 55 2 1 • 6	300 55 2 1 • 6	องเย 55 2: 1 • 6	3M9 55 2 1.6	WINDRICHTUNG UEBERHOEHUNG WETTERRAT. WINDRESCH	258 179 2 1•6	258 170 2 1.6	256 60 2 1.6	256 63 2 1•6
LTATILTIP ORDI Sir. Lambart. Path. Lambart. All.>FARTOn 11 Amb. ARL.	C OBENT GRETZEN 2.05615 10 3 11 999999.	8.05615 10 11 999999.	8.21326 10 11 999999	8.21326 16 11 999999.	STATISTIM OHNE STANDANDANW HEN. VENTE ABW.>FANTON 18 MAX. ABW.	-4665 10	:N .4605 10 2 999999.	.476752 13 2 999594.	•475722 13 2 999359• ,
DIATELIE SIT DIATEMENTAL Eal • Table ANG • PARTOL I. MAX • ASG •	GREWEN CHEMZEN r.W5615 10 1 13 y99999.	8.05615 10 13 99999.	6.21326 10 13 99999	8.21326 10 13 999999.	STATISTIR WIT STANDALDANG. BEN. WENTE ABW.>FARTON 10 MAX. ABW.	•4605 1J	.4685 10 4 599999.	.4737au 10 4 999999.	.4767au 13 4 999999
MA: 11 VARIATION DER	PARAMETER			·	NA. 11 VARIATION DER	РАКАМЕТЕН			1 2 2
WINDARDSTONG UEFFAR CEROND WEITERS AT: WINDAELONG.	AUS 300 55 2 1.6	VON BIS 200 310 0 0	STEP 2 M W 2		WINDRICHTURG UEBERHOEBUNG WETTERKAT- WINDGESCHW-	AUS 300 55 2 1+6	VON RIS 200 510 0 adu 2 6	STEP 2 10 1	í
	MIÍ HOEHENKOM MIT OBEMEN CMEMZEN	REKTUR OHNE ORERE GRENZEN	OHNE HOEHENK KIT OBEHEN GHENZEN	ORREKTOR GENE OBERE GRENZEN	·	MIT HOEMENKO MIT OBEAEN GAENZEN	RREKTUR OHNE OBERE OKENZEN	CHAE HOSHEN MII CHENEN GHENDEL	Konnek (un Okke Coene Unekoek
WINDHICHTUNG VARENHOEMYNG VARIANIAI. VINDKAJOHW.	258 55 1.6	258 55 2 1•6	258 55 2 1•6	258 55 2 1.6	WINDRICHTURG UEBERHOEHURG WETTERRAT. WINDGESCHW.	258 170 2 1•6	258 170 2 1•6	258 60 2 1 • 6	250 60 2 1•6
STATISTIK OHT STALDAMANN. DEN: WANTE ALL: PARTON IN MARK. ARE:	CBEME GMENZEN .472691 13 2 999999.	.472601 18 2 999999.	.476783 10 ខ 999999 •	.476783 16 2 999999.	STATISTIK ORRE STANDARDARE. HEN. WERTE ABW.>FARTOR 10 BAX. ABW.	OBERE GRENZE •4665	_	•4767৮৪ 10 ৪ ১	.476782 13 2 999999
. DIA. 15YIF MIT BIAL MELLETY. THE THE TRANSPORT IN ADS. FRANTON 18 MAX. FRY.	CSELEN GHELZEN •472631 10 4 999999.	.472601 10 4 999999.	•476783 16 4 999999.•	.476783 10 4 999999.	STATISTIK BIT STANDARDABE. DEN. EERTE ABW.>FARTOR 10 MAX. ABW.	-4685 13	N •4685 10 4 999999•	.476782 13 · 4 999999	.4767c 13 4 999999.

NA. 1 VANIATION DER	PAAVETER			•	NR. 1 VARIATION DEM F	PALITHET has			
WINDRECKTURE CETELRUERURG WINDRESCHE.	65 5 10 4	00% B15 3 0 6 9 6 9	STEP U O Ø		WINERICHTUNG WETTERMAT. UEREMHÖEHUNG WINDGESCHW.	AJS 65 2 18 4	VOX BIS 3 100 2 6 0 0	5Th.F 2 1 0 0	
	MIT HOEPENKOM. MIT GRENEK	ERTUR ORDE OBERE GREVZEN	CHAE HOEHENKOM MIT CHEMEN CHENZEK	MELTUR OHNE OBENE GRENZEN		NIT HOFHERWORN NIT OBEREN GREDZEN	ENTUA CANE OBEAE GAEAZEA	CHNE HOEMEN-C BIT COEMEN GRENZEN	inekion Chre brene Gnekder
THICKLONEOUS THICKLONEOUS THICKLONEOUS THICKLONEOUS	65 2 12 4	65 2 10 4	65 2 10 4	65 2 10 4	WINDRICHTONG WETTER AAT. OEREAHOEBUNG WINDGESCHW.	62 2 13 4	0-4 2 1.5 4	60° 2 10 4	60 2 10 4
STATISTIK CHNE STALLANDARN. Rel. VenTE ABL.×FAKTON 12 MAK. ASL.	0 CBERE GRENZEN -736617 4 1 1 -02265	.736617 4 1 1.52268	*84542 4 1 -1 *59856	+64542 4 1 -1+59856	STATISTIR OHNE STANDARDABW. MEN. LEATE AEU.>FAETOR 10 MAX. ABW.	OBEAE GAENZEN 734177 4 1 64002	•752562 4 1 1•02996	•784696 4 2 -1•27662	•724050 4 4 •1•27060
STATISTIK KIT STALDADARK. BEL. YEATE AGL.>FAKTEL 12 MAG. AGY.	OBEAEN GAENZEN •736617 4) 1 1•62266	.736617 4 1 1.02268	-84542 4 1 -1-59856	.84542 4 1 -1.59856	STATISTIK WIT (STANDARDARW. REN. WEATE ABW.>FARTOA 10 MAX. ABW.	DEEREN GRENZEN •663711 5 1 1•44002	.732362 4 1 1.32996	•7225 5 2 -1•27662	•7220 5 3 -1•27ct2
MA- 1 VM:IATION DEA	PARAKETEN			·	NR. 1 VARIATION DER F	PA - AMWTH-			- D14
LITURICATURG BETTEMPAT. URBENNIERURG LITURESCHV.	AUS 65 2 10 4	VGN BIS Ø 100 J D C Ø	STEP 2 C C C		VINDRICHTUNG WETTERGOT • UEBERHOEHUNG VINDGESCHV •	AUS 65 2 10 4	VON BIS 0 103 2 6 0 330	STEP 2 1 10 0	1
	MIT HÖEHENK C AR MIT GREAEN GAENZEN	REKTUR OHNE OBEKE GRENZEN	CHNE HOEHENKOR. MIT OBEREN GRENZEN	KELTUR OHWE OBERE GRENZEN		MIT HOEHENKORR EIT OBELEN GAENZEN	EKTUA OHNE OBERE GRENZEN	OHNE HOEHENRO NIT CBELLEN GRENZEN	AMENTUA CHNE CIETE GRENZEN
1111m1d#TUNG 1211mmm1. UmmmmdEm3: 0 111. Caudht.	62 2 13 4	64 2 13 4	66 2 1.0 4	60 2 10 4	WINDATCHTUNG WETTEARAT. UEGEAHORHUNG WINDGESCHW.	62 2 16 4	64 ଧ ଧ 4	60 2 0 4	6එ ප ය 4
STATISTIK OHNE STALDAALADY SEN. WHATE AUTISTA IOU IN U.D. MUNE.	4	•732362 4 1 1•62996	•764896 4 2 -1•27862	.784896 4 2 -1.27862	STATISTIK OHME STANDARDARW. BEN. WERTE ABW.>FARTOR 10 MAX. AWW.	0BENE GRENZEN .734177 4 1	.729047 4 1 .1.36945	•775744 4 2 -1•12998	.7757 4 2 -1.14595
Discount Nit Discount No. On. Chaild And Description In Code And C	Chemil: Chemizen • 863711 5 1 1 • 84.32	•732362 4 1 1 •82996	.7228 5 2 -1.27862	.7228 5 2 -1.27362	STATISTIR NIT (STANDALLANT. BEN. WENTE ABW.>FARTOR 16 EAX. APW.	032.EN G.ENZEN -663711 5 1	.729047 4 1 1 .76945	.736216 5 2 -1.12996	•736_16 5 - 3 : -1•13950

th. 1 Vaniation ben parameven		NA. 1 VARIATION DER PARAMETER	h.	
### ##################################	815 SIEP . 3 d d 8 d 5 d 5	WINDWICHTUNG GS UEDEMENDENUNG 10 WETTERRAT 2 WINDGESCHW. 4	000 313 STAP 0 100 0 0 330 10 0 0 0 0 0 0	
	R CHME HUEHESKORREKTUR E OEERE KIT GSEREN GHOE ON EZER GREKZER GREKZER	** * ** ** ** *** *** *** *** *** ***	REN ORKE CHERE MIT	E HOEHENNOLDERIJA COEMEN CAME COEME NOEN GARALEN
0110.1019 60 63 0	65 65 10 10 2 2 4 4	WINDAICHTUNG 62 UESEKHOEHUNG 10 WETTERKAT 2 WINDGESCHW 4	64 63 0 3 2 2 4 4	60 0 2 4
** . limina 4 4 4 4 4 4 4 1 1 1 1 1	36617 • **4542 • *54543; 4 4 1 1 32258 -1•59656 -1•59856	STATISTIN OHNE OBERE 6. STANDARDARD73417 DEW. WERTE 4 ABV.>FARTO: 10 1 NAX. ABW 1.0400	7 •729047 •7 4 4 1 2	75744 .7757 4 2 12995 -1.12992
STATISTIP WIT OPERED GREAZEN LINE SANTA 4 / The **Santon 15 1 1	36617	STATISTIK MIT OBEREN G STANDANDABW66371 DEN. WERTE 5 ABW.>FARTOR 10 1	1 •729047 •7 4 5 1 2	36216 -736216 5 2 12996 -1-12996
N 1 Delifation dem Pallameter		NA. 1 VARIATION DER PALAMETER	a	- D 15 -
AUS 00E 11 DETORTORS 65 8 ULBERTORTORS 10 6 EATTERVAL 2 0 FAILERORS 4	BIS STEP 150 2 0 0 0 0 0 0	WINDAICHTUNG 65 UEBELHOEHUNG 12 WETTERKAT. 2 WINDGESCHW. 4	VON BIS STEP C 100 2 O 300 10 2 6 1 O	
MIT HOEHEMMOMMERTUM MIT Grendh GHAE GARZZIN GAEM	R OHNE HOEHENKORRESTUR E OBERE - MIT OBEREN OHNE ON	NOT TO LOUD REAL PROPERTY AND A STATE OF THE PARTY AND A STATE OF THE P		E HOEHENKOAAERTUA
		GAENZEN		OBEAEN CHNE CREAE NEEN GAENEEN
######################################				INZEN GRENZEN
La Liverando	02EN: GAENZEN GAENZEN 60 66 10 10 10 2 2 4 4 32362 •784896 •784890 4 4 2 2	GRENZEN WINDRICHTUNG 62 UFBERROEHUNG 10 WETTFERRAT 2 WINDGESCHW. 4 STATISTIK OHNE OBERE C. STANDARDABW73417 BEG. WERTE 4 ABW.>FARTOR 10 1	GRENZEN GRE 64 53 3 6 2 6 4 4 4 RENZEN 7 .644168 .7 9 9	
10 10 10 10 10 10 10 10	GAENZEN GAENZEN 60 66 10 10 2 2 4 4 632362 •784896 •784890	GRENZEN WINDRICHTUNG 62 UFBERROEHUNG 10 WETTFERRAT 2 WINDGESCHW. 4 STATISTIK OHNE OBERE C. STANDARDABW73417 BEG. WERTE 4 ABW.>FARTOR 10 1	GRENZEN GRE 64 65 5 2 6 2 4 4 6 2 7 .644168 .7 7 4 4 6 2 7 -97442 -1. KENZEN	(NEEN GRENZEN 60 60 2 2 2 4 4 4 4 4 4 4 4 4

					•				
				•					
4					NA · 4				
WALLATILL LEA	ar a line a childh à dhaile					DAYAMETERS			
					VARIATION DEN	PHAR.E. I PA			
	AUS	VCN BIS	STEP				11511 6.7.		
WILLAIGHTU: C	485	G Ø	Ø .			AUS	VON BIS	511F	
LETTERFAT.	4	ಚ ೮	Ø .		WINDMICHTUNG	265	150 260	2	
ULBERHOLHUMG	43	ø ø	Ø		WETTERWAT.	Z1	2 6	1	
WILLGEBUHW.	1.2		Ø		UEBERHOEHUNG	40	er o	r)	
-1			J		WINDGESCHW.	1.2		1)	
	MIT HOERENMORE	www.iio	OHNE HOEHENK	OWNERSON					
		GHLE (BENE	EIT OBEAER	OHER OBERE		MIT HORBENKOR	00XT 03	CHAE HUERENA	(e., e.a. f.,
	EIN GBELEN					MIT CHELER	Chile Chere	NIT CSELEN	Chila Chana
	CARFEE	GRENZEN	GAENZEN	GAENZEN	•	CHENZEN	GLENZEN	G.ENDEN	Garage and
			_			GIAPAKZEA	C31 C 10 7 C E 19	Constitution	ومرتوب والمعادة
VI. LaidhighG	285	285	285	265					
William T.	4	4	4	1 1	WINDMICHTUMG	2.16	26	≟.; ŏ	2.5
UEBELLIGERUNG	40	42)	40	/lei	WETTERRAT.	2	2	의	€
% I U CEL 3111 #	1.2	1.2	1.2	1.2	UEDELAHOERUNG	4.;	$a_{\mathcal{O}}$	48	4
			*		WINDGESCHW.	1.2	1.2	1.2	1.6
	CHELLE GREEZEN								
	2	ø	Ø	ø	STATISTIK ORAW	ONEME CHENZEN			
37.1.3/1					STANDARIANU.	.346741	.346741	+324021	•32-, 24
11. · 111	2	ទ	ស	Ø		3	3		•3=• = • 3
	5	5	5	১	SEN- WEATE		_	ن	
. Alle Alle	555555	9999999.	999999•	999999•	ABW.>FOFTON 10		4	4	4
					MAK • ABW •	599999 -	999999	999999.	999999
LTALILLIA MIT	OTELEN GRENZEN								
STA; S.G.DABL.	6	Ø	O	3		OBEREN GRENZEN			
BEL - WARTE	ő	Ø	υ	Ø	STANDAMDABW.	.3292	•3292	•263985	•≥c3ye5
AeV.>FARTCh 12		6	6	6	BEN. WEATE	4	4	4	4
MAD: ABU.	999999.	999999.	999999.	999999.	ABW->FARTOn 10	5	5	5	5
	,,,,,,,	,,,,,,,	,,,,,,,	,,,,,,,	MAX - ABV -	999999•	9999999.	9999999	999999
•									
•			Ť						
			•						·
4									1
ha. 4 Varianion des	Parameter				Nñ. 4				- D 1
				:	NA. 4 VARIATION DER	PALAMETER			-
	PARAMETER AUS	Vom BIS	STEP	:					-D16
VARIATION DER	AUS .	VON BIS 180 260	STEP 2	:		PALAMETER AUS	VON SIS	STEP	-
VARIATION DER VILLAFORTUNG	AUS 265	180 260	2	:			VON 815 160 262	STEF 2	-
VARIATION DER VILLEIGHTUNG LETTERKAT:	AUS 265 4	8 6 8 6	2 Ø	:	VARIATION DER	AUS			-
VARIATION BER VILLEIGHTUNG VETTERZAT: URBERFERBUNG	AUS 265 4 43	180 260	2 0 0	:	VARIATION DER WINDAICHTUNG WETTERKAT.	AUS 255 4	160 262 2 6	2 1	-
VARIATION DER VILLEIGHTUNG LETTERKAT:	AUS 265 4	8 6 8 6	2 Ø	:	VARIATION DER WINDAICHTUNG WETTERNAT. UEBELHOEHUNG	AUS 255 4 40	160 262	2 1 10	-
VARIATION BER VILLEIGHTUNG VETTERZAT: URBERFERBUNG	AUS 265 4 43	8 6 8 6	2 0 0	:	VARIATION DER WINDAICHTUNG WETTERKAT.	AUS 255 4	160 262 2 6	2 1	-
VARIATION BER VILLEIGHTUNG VETTERZAT: URBERFERBUNG	AUS 265 4 48 1•2	180 260 0 0	2 0 0	:	VARIATION DER WINDAICHTUNG WETTERNAT. UEBELHOEHUNG	AUS 255 4 40	160 262 2 6	2 1 10	-
VARIATION BER VILLEIGHTUNG VETTERZAT: URBERFERBUNG	AUS 2d5 4 4z 1.2	180 260 0 0 0 0	2 0 0 0 0 OHNE HOEHENKO		VARIATION DER WINDAICHTUNG WETTERNAT. UEBELHOEHUNG	AUS 255 4 4(1) 1 • 2	180 262 2 6 0 300	2 1 10 6	16-
VARIATION BER VILLEIGHTUNG VETTERZAT: URBERFERBUNG	AUS 265 4 48 1.2 MIT HOEHENKOAM	180 260 0 0 0 0 EXTUR	2 0 0 0 0 0KNE HOEHENK(MIT OBEREN	OHNE OBERE	VARIATION DER WINDAICHTUNG WETTERNAT. UEBELHOEHUNG	AUS 255 4 46 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	160 262 2 6 0 300	2 1 10 6	16 -
VARIATION BER VILLEIGHTUNG VETTERZAT: URBERFERBUNG	AUS 2d5 4 4z 1.2	180 260 0 0 0 0	2 0 0 0 0 OHNE HOEHENKO		VARIATION DER WINDAICHTUNG WETTERNAT- UEBELHOEHUNG	AUS 255 4 46) 1.2 MIT HGEHENROA. MIT OBELEX	160 262 2 6 0 300 300 3ERTON 65.8E 05E.8E	2 1 10 6 CHAE HOEHEAN HIT O. CLEX	Connec Fil
VARIATION BER VILLEIGHTUNG VETTERZAT: URBERFERBUNG	AUS 265 4 48 1.2 MIT HOEHENKOAM	180 260 0 0 0 0 EXTUR	2 0 0 0 0 0KNE HOEHENK(MIT OBEREN	OHNE OBERE	VARIATION DER WINDAICHTUNG WETTERNAT- UEBELHOEHUNG	AUS 255 4 46 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	160 262 2 6 0 300	2 1 10 6	16 -
VARIATION BER VILLEIGHTUNG VETTERZAT: URBERFERBUNG	AUS 265 4 48 1.2 MIT HOEHENKOAM	180 260 0 0 0 0 EXTUR	2 0 0 0 0 0KNE HOEHENK(MIT OBEREN	OHNE OBERE	VARIATION DER WINDAICHTUNG WETTERNAT. UEBELHOEHUNG WINDGESCHW.	AUS 255 4 46) 1.2 MIT HGEHENROA. MIT OBELEX	160 262 2 6 0 300 300 3ERTON 65.8E 05E.8E	2 1 10 6 CHAE HOEHEAN HIT O. CLEX	Connec Fil
VARIATION DER WILLDICHTUNG LETTENWAT. UEBBROCHUNG LTNUCHUNG LTNUCHUNG LTNUCHUNG	AUS 265 4 42 1.2 MIT HOEHENKOAH MI. CBEARN CLARZEN 206	180 260 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OHNE HOEHENKO WIT OBEREN GRENZEN 206	OHNE OBERE GRENZEN 2016	VARIATION DER WINDAICHTUNG WETTERNAT. UEBELHOEHUNG WINDGESCHW.	AUS 255 4 46) 1.2 MIT HGEHENROA. MIT OBELEX	160 262 2 6 0 300 300 3ERTON 65.8E 05E.8E	2 1 10 6 CHAE HOEHEAN HIT O. CLEX	Connec Fil
VARIATION DER VILLBIGHTUNG LETTERWAT- CRIEBWERHUNG LINDGELORG- LINDGELORG- LINGGELORG- LI	AUS 265 4 48 1.2 MIT HOEHENKORM MIT CHERKEN CHERKEN 206 4	180 260 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0HNE HOEHENKO MIT OBEREN GRENZEN 206 4	OHNE OBEKE GKENZEN 2006 4 *	VARIATION DER WINDAICHTUNG WETTERNAT. URBERHOEHUNG WINDGESOHW.	AUS 255 4 46 1.2 MIT HGEHENRON NIT OBENEN GRENZEN 206	160 261 2 6 0 300 MERTUR 6.82 052.2 0.28XEX	E 1 10 CHEN HOEHENN HIT G. CHEN HOEHENNEN 206	Crimer Till Crime Chene Gue Nach Ede
VARIATION DER WINDERSETTING LETTENZAT. DE HAMPGENUNG LINDSELURU.	AUS 265 4 42 1.2 MIT HOEHENKOAM MI. GBEARN CLAFZEN 206 4 43	180 260 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OHNE OBERE GRENZEN 206 4 * 40	WINDATION DER WINDATCHTUNG WETTERKAT. UBBELHOEHUNG WINDGESCHW.	AUS 205 4 40 1.2 MIT HOEHENRON. MIT OBEAEX GRENZEN 206 2	160 262 2 6 0 300 .EERTON OLIVE OBELIE GLENNEN 206 2	EOG C CHAE HOEHEVA GAENZEN EOG CHAE HOEHEVA GAENZEN EOG C	Camer Fill Or the Cleane GLENZEL E36 2
VARIATION DER VILLBIGHTUNG LETTERWAT- CRIEBWERHUNG LINDGELORG- LINDGELORG- LINGGELORG- LI	AUS 265 4 48 1.2 MIT HOEHENKORM MIT CHERKEN CHERKEN 206 4	180 260 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0HNE HOEHENKO MIT OBEREN GRENZEN 206 4	OHNE OBEKE GKENZEN 2006 4 *	VARIATION DER WINDAICHTUNG WETTERKAT. UEBELHOEHUNG WINDGESCHW. WINDAICHTUNG WETTERKAT. UEBERHOEBUNG	AUS 255 4 46 1.2 MIT HOEHENROA. MIT OBEALEN GREWZEN 206 2	160 262 2 6 0 300 HERTON GIME OBENE GIENZEN 206 2	CHAE HOEHEAN MIT O DIEN GRENZEN 206 L 30	Connection of the College duty NATA
VARIATION DER WILLHICHTUNG LETTENWAT- UERRANGERUNG WILLERANGERUNG WILLERANGER WILLERANGER WILLERANGER WILLERANGER WILLERANGER	AUS 265 4 42 1.2 MIT HOEHENKOAH MI. GERAEN C.H.Y.E.N 206 4 43 1.2	180 260 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OHNE OBERE GRENZEN 206 4 * 40	WINDATION DER WINDATCHTUNG WETTERKAT. UBBELHOEHUNG WINDGESCHW.	AUS 205 4 40 1.2 MIT HOEHENRON. MIT OBEAEX GRENZEN 206 2	160 262 2 6 0 300 .EERTON OLIVE OBELIE GLENNEN 206 2	EOG C CHAE HOEHEVA GAENZEN EOG CHAE HOEHEVA GAENZEN EOG C	Camer Fill Or the Cleane GLENZEL E36 2
VARIATION EER VILLETERVAT: CETERVAT: CETERVAT: CETERVAT: VILLETORIOR VILLETOR	AUS 265 4 48 1.2 NIT HOEHENKOAM MIL GBEAEN CHEFZEN 206 4 40 1.2 Chamb Granzen	180 260 6 0 8 0 EKTUR CHAE OBERE GRENZEN 206 4 40 1.2	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OHNE OBERE GRENZEN 2006 4 * 400 1.22	WINDATION DER WINDATCHTUNG WETTERNAT. URBELHGEHUNG WINDGESCHW. WINDATCHTUNG WETTERNAT. UEGERHOEGUNG WINDGESCHW.	AUS 255 4 46 1.2 MIT HOEHENRON MIT OBELEX GRENZEN 206 2 0 1.2	160 262 2 6 0 300 HERTON GIME OBENE GIENZEN 206 2	CHAE HOEHEAN MIT O DIEN GRENZEN 206 L 30	Connection of the College duty NATA
VARIATION DER WINDERSCHTUNG LETTERWAT. UE HERFGERUNG LINDSRUCKE. WINDSRUCKE.	AUS 265 4 42 1.2 MIT HOEHENKOAM MI. GBEAEN CLEFZEN 206 4 43 1.2 GEARK GRANZEN -581976	180 260 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OHNE OBERE GRENZEN 206 4 * 40 1.2	WINDATION DEA WINDATCHTUNG WETTERKAT. UEBELHOEHUNG WINDGESCHW. WINDATCHTUNG WETTERKAT. UEBERHOEHUNG WINDGESCHW. STATISTIK OBNE	AUS 205 4 40 1.2 MIT HGEHENRON. MIT OBEAEN GREWZEN 206 2 0 1.2 OBEAE GLENZEN	160 262 2 6 0 300 MERTON OTAE OBEAU GLEAVEN 206 2 0	2 1 10 6 CHAE HOEHELA MIT G. CLEN GLENZEN 206 L 30 1.2	Connect form Of the College GLENZEL ELSE 2 0 1.2
VARIATION DER WILDHIGHTSING LETTERWAT. UE HERMESENSING LINDSELURY. LIN AICHTUNG WEBLERWAT. LERING SANTOLIP ORDER LINDSELURY. LANTOLIP ORDER LINDSELURY. LANTOLIP ORDER LINDSELURY.	AUS Le5 4 42 1.2 MIT HOEHENKORM MI. OBEARN CHAPZEN 206 4 40 1.2 Charle Granzen 581976	180 260 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OHNE HOEHENKO MIT OBEREN GRENZEN 206 4 40 1.2	OHNE OBERE GRENZEN 206 4 * 40 1.2	WINDATION DEA WINDATCHTUNG WETTERKAT. URBELHOEHUNG WINDGESCHW. WINDATCHTUNG WETTERKAT. URBERHOEHUNG WINDGESCHW. STATISTIK OHNE STANDALDARW.	AUS 255 4 46 1.2 MIT HOEHENROA. MIT OBEAEN GRENZEN 206 2 0 1.2 OBEAE GRENZEN .325657	160 262 6 0 300 300 300 300 300 300 300 300 300	2 1 10 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Connect Till Or the Colemb GLENNAST ELGG 2 0 1 • 2
VARIATION EER VILLHIGHTUNG LETTERWAT- CRIERWERHUNG LINUGELURS- LI	AUS Le5 4 42 1.2 MIT HOEHENKORM MI. OBEARN CHAPZEN 206 4 40 1.2 Charle Granzen 581976	180 260 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OHNE OBERE GRENZEN 206 4 * 40 1.2	WINDATON DEA WINDATCHTUNG WETTERKAT. UEBELHOEHUNG WINDGESCHW. WINDATCHTUNG WETTERKAT. UEBERHOEHUNG WINDGESCHW. STATISTIK OHNE STANDALDARW. DER. VELTE	AUS 255 4 461 1.2 MIT HOEHENROA. MIT OBELEX GRENZEN 206 2 0 1.2 OBERE GLENZEN 325857 3	160 262 2 6 0 300 MERTON OBENZ OLEMNEN See 57 3 256 57	2 1 10 6 CHAE HOEHEDA ELT 0. ELEX GREXZEX 206 1 3.0 1.2	Conney 7 Or the Culents due NARL 2.06 2 0 1.2 .311853
VARIATION DER WILDHIGHTSING LETTERWAT. UE HERMESENSING LINDSELURY. LIN AICHTUNG WEBLERWAT. LERING SANTOLIP ORDER LINDSELURY. LANTOLIP ORDER LINDSELURY. LANTOLIP ORDER LINDSELURY.	AUS Le5 4 42 1.2 MIT HOEHENKORM MI. OBEARN CHAPZEN 206 4 40 1.2 Charle Granzen 581976	180 260 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OHNE HOEHENKO MIT OBEREN GRENZEN 206 4 40 1.2	OHNE OBERE GRENZEN 206 4 * 40 1.2	WINDATION DEA WINDATCHTUNG WETTERKAT. UEBELHOEHUNG WINDGESCHW. WINDATCHTUNG WETTERKAT. UEGERHOEHUNG WINDGESCHW. STATISTIK OHNE STANDALDARW. DEN. VELTE AFW.>FORTOR 10	AUS 255 4 46 1.2 MIT HOEBENRON MIT OBELEN GRENZEN 206 2 0 1.2 OBERE GLENZEN .325857 3	160 262 2 6 0 300 300 300 300 300 300 300 300 300	2 1 10 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Connection of the Colone due Notes. 206 2 0 1-2 -311623 4
VARIATION EER VILLHIGHTUNG LETTERWAT- CRIERWERHUNG LINUGELURS- LI	AUS 265 4 42 1.2 MIT HOEHENKOAH MI. GBEARN CLAPZEN 206 4 43 1.2 GBARK GBARZEN -581976 3	180 260 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OHNE HOEHENKO MIT OBEREN GRENZEN 206 4 40 1.2 .575386 3 3	OHNE OBERE GRENZEN 2006 4 * 400 1 • 22 • 575386 3	WINDATON DEA WINDATCHTUNG WETTERKAT. UEBELHOEHUNG WINDGESCHW. WINDATCHTUNG WETTERKAT. UEBERHOEHUNG WINDGESCHW. STATISTIK OHNE STANDALDARW. DER. VELTE	AUS 255 4 461 1.2 MIT HOEHENROA. MIT OBELEX GRENZEN 206 2 0 1.2 OBERE GLENZEN 325857 3	160 262 2 6 0 300 MERTON OBENZ OLEMNEN See 57 3 256 57	2 1 10 6 CHAE HOEHEDA ELT 0. ELEX GREXZEX 206 1 3.0 1.2	Conney 7 Or the Culents due NARL 2.06 2 0 1.2 .311853
VARIATION EER WINDEFERVATA DE HENGERUNG WINDERLORY	AUS 265 4 42 1.2 MIT HOEHENKOAH MI. GBEARN CLAPZEN 206 4 43 1.2 GBARK GBARZEN -581976 3	180 260 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OHNE HOEHENKO MIT OBEREN GRENZEN 206 4 40 1.2 .575386 3 3	OHNE OBERE GRENZEN 2006 4 * 400 1 • 22 • 575386 3	WINDATION DEA WINDATCHTUNG WETTERKAT. UEBELHOEHUNG WINDGESCHW. WINDATCHTUNG WETTERKAT. UEGERHOEHUNG WINDGESCHW. STATISTIK OHNE STANDALDARW. DEN. VELTE AFW.>FORTOR 10	AUS 255 4 46 1.2 MIT HOEBENRON MIT OBELEN GRENZEN 206 2 0 1.2 OBERE GLENZEN .325857 3	160 262 2 6 0 300 300 300 300 300 300 300 300 300	2 1 10 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Connection of the Colone due Notes. 206 2 0 1-2 -311623 4
VARIATION DER VINDRIGHTSHOOT LETTERRAT. UE HANGERUNG LINDGEUGELUNG LINGGEUGELUNG LIN	AUS 265 4 48 1.2 MIT HOEHENKORM ELL GREARN CHARZEN 206 4 40 1.2 Chark Granzen 581976 3 999999. German Granzen	180 260 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OHNE OBERE GRENZEN 206 4 * 40 1.2 .575386 3 3 999999.	WINDATION DEA WINDATCHTUNG WETTERKAT. URBELHOEHUNG WINDGESCHW. WINDRICHTUNG WETTERKAT. URBERHOERUNG WINDGESCHW. STATISTIR OHNE STANDALDARW. DEN. VELTE ARW.>FORFOR 10	AUS 255 4 46 1.2 MIT HOEBENRON MIT OBELEN GRENZEN 206 2 0 1.2 OBERE GLENZEN .325857 3	160 262 2 6 0 300 300 300 300 300 300 300 300 300	2 1 10 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Connection of the Colone due Notes. 206 2 0 1-2 -311623 4
VARIATION EER VILLHIGHTUNG LETTERWAT. CERRHOUNGENING LINDSELURU. AIT RICHTUNG LETTERWAT. DEALER RESIG LINDSELURU. SAFILITY OFFIRE LINDSELURU. LINDS	AUS 265 4 42 1.2 MIT HOEHENKOAM MIL GREARN CLEFZEN 206 4 43 1.2 Charle Granzen 581976 3 970999. GREARN GRENZEN 56441	180 260 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OHNE OBERE GRENZEN 2W6 4 * 4W 1.2 .575386 3 599999.	WINDATON DEA WINDATCHTUNG WETTERRAT. UEBELHOEHUNG WINDGESCHW. WINDGESCHW. WINDGESCHW. STATISTIK OHNE STANDALDARW. BEN. WELTE ARW.>FARTOR TO EAX. ARW.	AUS 255 4 46 1.2 MIT HOEHENROM. MIT OBEREN GRENZEN 206 2 9 1.2 OREME GRENZEN 325857 3 4 999999	160 262 2 6 0 300 300 300 300 300 300 300 300 300	2 1 10 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Connection of the Colone due Notes. 206 2 0 1-2 -311623 4
VARIATION EER VINDRECHTORG LETTERWAT. CERRICHTORG LINDSELDEL. LINDS	AUS 265 4 48 1.2 MIT HOEHENKOAM MI. OBEAEN CLEFZEN 206 4 40 1.2 GERAEL GERNZEN 581976 3 970999. GERAEL GERNZEN 56441 4	180 260 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OHNE OBERE GRENZEN 206 4 * 40 1.2 .575386 3 599999.	WINDATION DEA WINDATCHTUNG WETTERRAT. UEBELHOEHUNG WINDGESCHW. WINDATCHTUNG WETTERRAT. UEBERHOEBUNG WINDGESCHW. STATISTIK OBNE STANDA. DARW. DEN. VELTE ABW. STATISTIK NIT STANDARDARW.	AUS 255 4 46 1.2 MIT HGEBENRON. MIT OBEREN GRENZEN 206 2 0 1.2 OBERE GRENZEN 325857 3 4 999999 OBEREN GRENZEN .322411	160 262 2 6 0 300 300 300 300 300 300 300 300 300	2 1 10 6 0000 HOEHEVA FIT G. D.LEN GRENZEN 206 1 30 1.2 30 1.2 30 4 1.99999.	Contact Toll Contact Colonia Contact Colonia Contact Colonia Contact Toll Contact
VARIATION EER VINDREGHTSEG LETTERRAT. UEIRRAGERUEG LINDSELGES. VIN GRICHTUNG LINDSELGES. VIN GRICHTUNG LETTERRAGE LETT	AUS Le5 4 42 1.2 MIT HOEHENKOAM MI. OBEARN C.AR ZEN 206 4 43 1.2 Chank Granzen 581976 3 5 970999. CERAKN GRENZEN 56441 4 3	180 260 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OHNE OBERE GRENZEN 206 4 * 40 1.2 .575386 3 599999.	WINDATION DEA WINDATCHTUNG WETTERKAT. UEBELHOEHUNG WINDGESCHW. WINDATCHTUNG WETTERKAT. UEBERHOEBUNG WINDGESCHW. STATISTIR OBNE STANDALDARW. DER. WELTE ABW. FARTOR TO EAX. ABW. STATISTIR NIT STANDARDARW. BEN. WELTE	AUS 255 4 46 1.2 MIT HOEHENROA. MIT OBEREN GRENZEN 206 2 0 1.2 OBERE GRENZEN 325857 3 4 999999 OBEREN GRENZEN 522411 4	160 262 2 6 0 300 300 300 300 300 300 300 300 300	2 1 10 6 6 6 6 17 0 CHEN GRENZEN 206 1 20 30 1:2 323655 3 4 59999.	Connect Till Or the Culent Girth Notit 206 2 0 1.2 .3118.3 4 599959.
VARIATION EER VINDRECHTORG LETTERWAT. CERRICHTORG LINDSELDEL. LINDS	AUS 265 4 48 1.2 MIT HOEHENKOAM MI. OBEAEN CLEFZEN 206 4 40 1.2 GERAEL GERNZEN 581976 3 970999. GERAEL GERNZEN 56441 4	180 260 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OHNE OBERE GRENZEN 206 4 * 40 1.2 .575386 3 599999.	WINDATION DEA WINDATCHTUNG WETTERRAT. UEBELHOEHUNG WINDGESCHW. WINDATCHTUNG WETTERRAT. UEBERHOEBUNG WINDGESCHW. STATISTIK OBNE STANDA. DARW. DEN. VELTE ABW. STATISTIK NIT STANDARDARW.	AUS 255 4 46 1.2 MIT HOEHENROA. MIT OBEREN GRENZEN 206 2 0 1.2 OBERE GRENZEN 325857 3 4 999999 OBEREN GRENZEN 522411 4	160 262 2 6 0 300 300 300 300 300 300 300 300 300	2 1 10 6 0000 HOEHEVA FIT G. D.LEN GRENZEN 206 1 30 1.2 30 1.2 30 4 1.99999.	Commer Fill Crite Cleane GLENARIL 236 2 0 1.2 .311883 3 4 599999.

La. 4									
Verlation ber	Panakhi hr				N 4 VARIATION DEA 1	A COLON STRUCT			
	A·Is	VON BIS	STEP		Villian I on Buil				
V21	850	6 6	Ø			AUS	VON BIS	PLES	
olensellik Grigopia	43	(r) (r)	И		WINDAICHTUNG UEBEAHOEHUNG	285 40	160 260 0 300	2 10	
kaTikaPai-	4	(i (i)			VETTERKAT.	4	0 0	10 12	
k1UCnaCrik∗	1.2		ω		WINDGESCHW.	1.2		ថ	
	FIT HORFENKOM		OHLE HOEHENKO			MIT HOEHENKOAN	ACTURE	CENE HOLHERK	Carana I U.
	FII GARLEN Gratzal	OLEE OBERE Garages	MIT OBEREN	Ohne Obrice Grenzen		MIT GRENEN	OHNE OBEAE	MIT OBENEA	CHAE CHEAE
	Ohimaria	***************************************	CITCH III ELEM			GAENZEN	CHENZER	G.ENZEN	us.EN.TEN
11: 1.413: TULA	×10	285	265	285	WINDICHTUNG	206	236	236	256
CENEMBOR, INC	4.)	40	40	Z ₁ (z) Z ₁	UEBEAH CEHUNG	ນ ວ	0	4.5	200 3
% 2002 22.22 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 1 •2	4 1 • 건	4 1 • 2	1.2	WETTERKAT .	4	4	4	4
, * * : # : # : # : # : # *	1 • 2	1 • 4	***		WINDCESCHW.	1.2	1.2	i •2	1.0
	MESSAGED BREED				STATISTIK CHNE	100 to 20 to 20 to 100			
11-1 Septibility	Ç.	9)	e a	ن * م	STANLANDABV.	•553293	•553293	•575386	•bblbla
Esh. kmill Abl.>FAKICA 18	й 5	မ ၁	ი 5	; Ø 5	BEN. WHATE	3	3	3	ű
- NOR-PERKION 10 - NAX- ABL-	5 555555	999999	999999•	999999.	ABW.>FARTOR 10	3	3	ذ	s
					MAX • ABU •	999999•	999999.	599999·	999939.
ERGISTIF MIT					STATISTIK MIT (HER AND GARAZEA			
Blich Lemenths. Blick Starit	0 8	() Ø	မ ဖ	Ø 6	STANDARLABW.	•526066	•526086	•5753o6	1 ت 2 ر 57
ABL -> FARTOR 13	_	6	ó ·	6	BEN. WELTE	4	4	3	4 .
FAX. AND.	999999	999999	999999.	999999.	ABW.>FARTOR 13	3	3	3	3
					NAX · ABV ·	999999.	999999	999999•	§ 96696 •
									1
La. 4					No.				- D
la. 4 VARIATION DEA	Panaveter				Na. 4 Variation Dec. 1	PAGA KATER			-D1
		NOV BIS	STAP		Nate 4 VARIATION DER 1	POWETER			-D17
VARIATION BEA	PARAMETER AUS 285	VON BIS 182 262	STŁP 2		VARIATION DER 1	AUS	VON HIS	STEP	-D17-
VARIATION DEA VINCESCRIUM VENERALISMO	AUS	182 262 C Ø	<u>د</u> د		VAMIATION DER 1 WINDRICHTUNG	AUS 265	180 260	2	-D17-
VARIATION DEA WINDERICHTUNG UNINCENSING VETTENSAI!	AGS 285 40 4	182 262	2 0 0		VARIATION DER 1 WINDRICSTUNG GESERRGEHUNG	AUS 265 4a	180 260 0 300	2 10	-D17-
VARIATION DEA VINCESCRIUM VENERALISMO	AUS 285 40	182 262 C Ø	<u>د</u> د		VARIATION DER 1 WINDRICHTUNG GEBERROEHUNG WETTERKAT.	AUS 265 43 4	180 260	2 10 1	-D17-
VARIATION DEA WINDERICHTUNG UNINCENSING VETTENSAI!	AGS 285 40 4	182 262 C Ø	2 0 0		VARIATION DER 1 WINDRICSTUNG GESERRGEHUNG	AUS 265 4a	180 260 0 300	2 10	-D17-
VARIATION DEA WINDERICHTUNG UNINCENSING VETTENSAI!	AUS 285 40 4 1.3	182 260 C 0 C 0	OHNE HOEHENKO		VARIATION DER 1 WINDRICHTUNG GEBERROEHUNG WETTERKAT.	AUS 285 40 4 1 • 2	180 260 0 3.10 2 6	2 10 1 0	-D17-
VARIATION DEA WINDERICHTUNG UNINCENSING VETTENSAI!	AUS 265 40 4 1.3 MIT HOEHENKOAD MIT ODERBIN	CHME OBERE CHME OBERE	CHNE HOEHENKO	OHNE OBERE	VARIATION DER 1 WINDRICHTUNG GEBERROEHUNG WETTERKAT.	AUS 265 40 4 1.2 MIT HOEHENKOAN	182 260 0 300 2 6	2 10 1 0 OHAL HOEREAN	
VARIATION DEA WINDERICHTUNG UNINCENSING VETTENSAI!	AUS 285 40 4 1.3	182 260 C 0 C 0	OHNE HOEHENKO		VARIATION DER 1 WINDRICHTUNG GEBERROEHUNG WETTERKAT.	AUS 285 40 4 1 • 2	180 260 0 3.10 2 6	2 10 1 0	ORNER FUN ORNER FUN ORNER GRENE
VARIATION DEA VINCATONO URI ALPIANDIO VETTENNAI. VINCABURK.	AUS 285 40 4 1.3 MIT HOEHENKOAR EIT ODRAGER GREEZER	182 260 C W C W CHUE OBSHE GLENZEN	OHNE HOEHENKO MIT OPEAEN GAENZEN	OHNE OBERE	VARIATION DER 1 WINDRICSTUNG UESELHSEHUNG WETTERKAT. WINDGESCHV.	AUS 265 40 4 1.2 MIT HOEHENKORD MIT OBEREN GAENZEN	180 260 0 300 2 6 ERTUR OHNE OBERE GRENZEN	OHNE HOEMENE NIT OBEREN GREENZEN	UHAR (BENE Unchick
VARIATION DEA WINDERICHTUNG UNINCENSING VETTENSAI!	AUS 265 40 4 1.3 MIT HOEHENKOAD MIT ODERBIN	CHME OBERE CHME OBERE	CHNE HOEHENKO	OHNE OBERE GRENZEN 206 40	VARIATION DER 1 VINDRICHTUNG UEBERHÖEHUNG WETTERKAT. WINDGESCHV.	AUS 265 40 4 1.2 MIT HOEHENKOAN EIT OBEREN GAENZEN 206	180 260 0 300 2 6 LERTUR OBERE GRENZEN 206	OHAN HOLHEAN ALL OBENEA GREAKEN	UHAR (BENE UNEAJEA 276
VARIATION DEA WINDRICHTUNG UET AUFTERVAI. UINLICESUMV. VINDRICHTUNG UETRAG LEFUNG VALIENSAI.	AUS 285 40 4 1.3 MIT HOEHENKOAR MIT ODEREN GRELZEN 235 40 4	182 260 C 0 0 C 0 0 REMIUR CHAE OBERE GLEAZER 286 40 4	OHNE HOEHENKO MIT OPEREN GRENZEN 226 40 4	OHNE OBERE GRENZEN 2006 40 4	VARIATION DER 1 WINDRICHTUNG UNDERSCHU. WINDGESCHU. WINDRICHTUNG UNDRICHTUNG	AUS 285 40 4 1.2 MIT HOEHENKOAN MIT OBEREN GAENZEN 206 9	180 260 0 300 2 6 ERTUK OHNE OBEKE GRENZEN 206	OHNE HOEHENK NIT OBENEN GRENZEN ENG	UHAR (Sene UneAJEA E/6 U
VARIATION DEA VINDRICKTURC UET AUFTRICHE VINDCKSURG. VINDRESPICAC UETRACIA	AUS 265 40 4 1.3 MIT HOEHENKORD MIT ODEREN GREEZED	182 260 C 0 C 0 C 0 EERTUH CHME OBERE GLENZEN 206 40	OHNE HOEHENKO MIT OPELEN GAENZEN 206 40	OHNE OBERE GRENZEN 206 40	VARIATION DER 1 WINDRICSTUNG UEBERHOEHUNG WETTERKAT. WINDGESCHV. WINDRICSTUNG UEBERHOEHUNG WETTERKAT.	AUS 265 40 4 1.2 MIT HOEHENKOAN EIT OBEREN GAENZEN 206	180 260 0 300 2 6 LERTUR OBERE GRENZEN 206	OHAN HOLHEAN ALL OBENEA GREAKEN	UHAR (BENE UNEAJEA 276
VARIATION DEA VINDRICHTUNC UET HUSTERNAI. UTHLICKSUNG. VINDRICHTUNG VENERAL DEFUNG VENERAL DEFUNG VENERAL DEFUNG	AUS 285 40 4 1.3 MIT HOEHENKOAL EIT ODEHEN GRENZEN 235 40 4 1.2	182 260 C 0 0 C 0 0 REMIUR CHAE OBERE GLEAZER 286 40 4	OHNE HOEHENKO MIT OPEREN GRENZEN 226 40 4	OHNE OBERE GRENZEN 2006 40 4	VARIATION DER 1 VINDRICHTUNG UEBERHÖEHUNG WETTERKAT. WINDRESCHV. VINDRICHTUNG UEBERHÖEHUNG WETTERKAT. WINDRESCHV.	AUS 265 40 4 1.2 MIT HOEHENKOAN EIT ORENEN GAENZEN 206 9 2 1.2	180 260 0 300 2 6 LERTUN UHNE OBEKE GRENZEN 206 0	OHAN HOMEAN NIT ONEMEN WIT ONEMEN GAMANEN 206 40.	UPAR (REAE UNEAUEA E.6 U 2
VARIATION DEA VINDRICHTUNC UET HUSTERNAI. UTHLICKSUNG. VINDRICHTUNG VENERAL DEFUNG VENERAL DEFUNG VENERAL DEFUNG	AUS 285 40 4 1.3 MIT HOEHENKOAR MIT ODEREN GRELZEN 235 40 4	182 262 C Ø C Ø SERTUR CHNE OBERE GLENZEN 286 40 4 1.2	OHNE HOEHENKO MIT OPEREN GRENZEN 206 40 4 1.2	OHNE OBERE GRENZEN 206 40 4 1.2	VARIATION DER 1 VINDRICHTUNG CEGERHOEHUNG WETTERKAT. WINDGESCHV. VINDRICHTUNG UEDERHOEHUNG WETTERKAT. WINDGESCHV. STATISTIK OHNE	AUS 265 40 4 1.2 MIT HOEHENKOAN MIT GRENZEN 206 9 2 1.2 GGERF GRENZEN	180 260 0 300 2 6 LERTUK OANE OBEKE GRENZEN 206 0 2	OHNE HOEHENK NIT OBENEN ENGNEN ENGNEN ENG 40. 2 1.8	enaf) (Manu Machand Ang B B B B B
VARIATION DEA WINDRICHTONG UNITERNAL. UNDCREDER. VINDRECHONG VARIANTANA VAR	AUS 285 40 4 1.2 MIT HOEHENKOM MIT ORMHEN GRENZEN 235 40 40 1.2 CREME CAENZEN 581976	182 268 C 0 0 C 0 0 REKTUR CHNE OBERE GRENZEN 286 40 40 4 1.2	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OHNE OBERE GRENZEN 2006 40 4 1.2 .575386 3	VARIATION DER 1 VINDRICSTUNG UESERHSEHUNG WETTERKAT. WINDGESCHV. VINDRICKTUNG UESERHSEHUNG WETTERKAT. WINDGESCHV. STATISTIK OHNE STANDARDARV.	AUS 285 40 4 1.2 MIT HOEHENKORN MIT OBEREN GAENZEN 206 9 2 1.2 GGERE GRENZEN -325a57	180 260 0 300 2 6 EERTUN UHNE OBEKE GRENZEN 206 0 2 1.8	OHAN HOMMENS OHAN HOMMENS NIT ONEMEN GRENZEN GRENZEN 206 40. 2 1.2	DAN (Sana Granden) 2 1.2 1.2
VARIATION DEA VINDRICKTURC UST AUSTRALIUM VERLEURG VERLE	AUS 265 40 4 1.2 MIT HOEHENKOA EIT ODENEH GRENZEH 205 40 4 1.2 CRENE CAENZEN 581976 3	182 268 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OHNE OBERE GRENZEN 2#6 40 4 1.2 .575386 3	VARIATION DER 1 WINDRICSTUNG UESERHOEHUNG WETTERKAT. WINDGESCHV. WINDRICHTUNG UESERHOEHUNG WETTERKAT. WINDGESCHV. STATISTIK OHNE STANDARDARK. DEN. UERTE.	AUS 265 40 4 1.2 MIT HOEHENKOAN MIT GRENZEN 206 9 2 1.2 GGERF GRENZEN	180 260 0 300 2 6 LERTUK OANE OBEKE GRENZEN 206 0 2	OHNE HOEHENK NIT OBEREN GRENZEN 206 40. 2 1.2	enaf) (Manu Machand Ang B B B B B
VARIATION DEA WINDRICHTONG UNITERNAL. UNDCREDER. VINDRECHONG VARIANTANA VAR	AUS 285 40 4 1.2 MIT HOEHENKOM MIT ORMHEN GRENZEN 235 40 40 1.2 CREME CAENZEN 581976	182 268 C 0 0 C 0 0 REKTUR CHNE OBERE GRENZEN 286 40 40 4 1.2	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OHNE OBERE GRENZEN 2006 40 4 1.2 .575386 3	VARIATION DER 1 VINDRICSTUNG UESERHSEHUNG WETTERKAT. WINDGESCHV. VINDRICKTUNG UESERHSEHUNG WETTERKAT. WINDGESCHV. STATISTIK OHNE STANDARDARV.	AUS 285 40 4 1.2 MIT HOEHENKORD MIT OREDEN GRENZEN 206 0 2 1.2 UGERE GRENZEN 325857 3	180 260 0 3J0 2 6 LERTUR UHNE OBERE GRENZEN 206 0 2 1:2	OHAN HOMMENS OHAN HOMMENS NIT ONEMEN GRENZEN GRENZEN 206 40. 2 1.2	DAN (Sana Granden) 2 1.2 1.2
VARIATION BEA VINDRICHTONC URITHRICH VETTERNAL. UNLICEDING VETTERNAL. UNLICEDING VETTERNAL. VINDRESTRIC VETTERNAL. VETTERNA	AUS 265 40 4 1.2 MIT HOEHENKOA EIT ODENEH GRENZEH 205 40 4 1.2 CRENE CAENZEN 581976 3	182 268 C 0 0 C 0 0 EEETUR CHNE OBERE G.ENZEN 286 40 4 1.2 .581976 3 3 999999.	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OHNE OBERE GRENZEN 206 40 4 1.2 .575386 3 999999.	VARIATION DER 1 VINDRICHTUNG UEBERHOEHUNG WETTERKAT. WINDRICHTUNG UEBERHOEHUNG WETTERKAT. WINDRESCHW. STATISTIK OHNE STANDARDARW. NEN. SELTE ARW.>FARTOR 18	AUS 285 40 4 1.2 MIT HOEHENKORE MIT OBEREN GAENZEN 206 0 2 1.2 COFFE GRENZEN 325007 3 4 999999.	180 260 0 300 2 6 LERTUR UANE OBEAE GRENZEN 206 0 2 1.2	2 10 1 0 0HNE HCEHENK NIT OBENEK GRENZEN 206 40. 2 1.2	UPAN (SENE GREATEN 2 1.2 1.2
VARIATION DEA WINDRICHTUNG URTHANDIC LETTENDAI. LINECKSUNG VINDREDEAU VINDREDEAU VINDREDEAU VINDREDEAU VINDREDEAU VINDREDEAU ATTENDAIDANDAN ATTENDAI ATTENDAIDANDAN	AUS 285 40 4 1.3 MIT HOEHENKOM MIT OFFMEN GREIZEN 205 40 4 1.2 CREME CAENZEN 581976 3 999999. CLAMEL CHELZEN 56441	182 268 0 9 0 9 MERTUR CHME OBERE GLENZEN 206 40 4 1.2 .581976 3 909999.	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OHNE OBERE GRENZEN 206 40 4 1.2 .575386 3 999999.	VARIATION DER 1 VINDRICHTUNG CEBELHGEHUNG WETTERKAT. WINDGESCHV. WINDRICHTUNG UEBERHOEHUNG WETTERKAT. WINDGESCHV. STATISTIK OHNE STANDARDARV. NEN. CELTE ARC.>FARTOA 18 MAX. ARV.	AUS 285 40 4 1.2 MIT HOEHENKORM MIT OREMEN GRENZEN 206 9 2 1.2 00ERE GRENZEN 325a57 3 4 999999.	180 260 0 300 2 6 LENTUN UHNE OBERE GRENZEN 206 0 2 1.2 .325657 3 4 9999999.	0HNE HOLHENS 1 0 0HNE HOLHENS NIT OBERES GRENZES 206 40. 2 1.2 324021 3 4 999999	UPAN (SERE GREATEN 2
VARIATION DEA WINDRICHTUNG URI AND NAMED OF LETTERS AI. LINE CREUNE VINERAL DEFUNG VENERAL DEF	AUS 265 40 4 1.3 MIT HOEHENKOM MIT ODENEN GRENZEN 235 40 4 1.2 CREME CAENZEN .581976 3 999999. Chamen Chenzen .56441 4	182 260 0 0 0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OHNE OBERE GRENZEN 206 40 4 1.2 .575386 3 999599.	VARIATION DER 1 VINDRICHTUNG UEBERHOEHUNG WETTERKAT. WINDRICHTUNG UEBERHOEHUNG WETTERKAT. WINDRESCHW. STATISTIK OHNE STANDARDARW. NEN. SELTE ARW.>FARTOR 18	AUS 285 40 4 1.2 MIT HOEHENKORE MIT OBEREN GAENZEN 206 0 2 1.2 COFFE GRENZEN 325007 3 4 999999.	180 260 0 300 2 6 LERTUR UANE OBEAE GRENZEN 206 0 2 1.2	2 10 1 0 0HNE HCEHENK NIT OBENEK GRENZEN 206 40. 2 1.2	UPAN (SENE GREATEN 2 1.2 1.2
VARIATION DEA WINDRICHTUNG URTHANDIC LETTENDAI. LINECKSUNG VINDREDEAU VINDREDEAU VINDREDEAU VINDREDEAU VINDREDEAU VINDREDEAU ATTENDAIDANDAN ATTENDAI ATTENDAIDANDAN	AUS 265 40 4 1.3 MIT HOEHENKOM MIT ODENEN GRENZEN 235 40 4 1.2 CREME CAENZEN .581976 3 999999. Chamen Chenzen .56441 4	182 268 0 9 0 9 MERTUR CHME OBERE GLENZEN 206 40 4 1.2 .581976 3 909999.	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OHNE OBERE GRENZEN 206 40 4 1.2 .575386 3 999999.	VARIATION DER 1 VINDRICHTUNG CEGERROEHUNG WETTERRAT. WINDGESCHW. VINDRICHTUNG UEDERHOEHUNG WETTERRAT. WINDGESCHW. STATISTIK OHNE STANDARDARW. NEW. SFARTUR 10 NAW. ABW. STATISTIK MIT O	AUS 285 40 4 1.2 MIT HOEHENKORE MIT OBEREN GAENZEN 206 9 2 1.2 CORRE GRENZEN 325057 3 4 5999999. DBEREN GRENZEN 322411 4	180 260 0 300 2 6 MERTUR UANE OBERE GRENZEN 206 0 2 1.2 .325657 3 4 9999999.	2 10 11 0 0HNE HCEHENK NIT OBENEN GRENZEN 206 40 2 1.8 .324001 3 999999.	UPAN (SERE GREATEN CREATEN CRE

has a	5			
562.16	7701.	υΞ.:	i Ashi el	11.

	<u>ಎ</u> ರಿಎ	Vot.	DIS.	STEE
A. LAIDHATAC	175	r r	ź	2
ALTIENS NI.	4	6	6)	Ü
Uzinz. CheUhu	35	Ø	o	Ø
WINDGESCHW.	2.5			Ø

	EII ECHHELEOR	ather Turi	OHNE HOEHENROAMERTUR		
		OHNE OBERE	MIT OBEREN	OHNE OBERE	
	C.i.iZ.i	CARLZEN	Gn EAZ EA	GREAZEA	
111 124 4 31 6	195	195	195	195	
5	4	4	4	4	
المرائل تبدر المصارات	35	35	35	35	
	2.5	2.5	2.5	2.5	
Similarn come	GLENE GHEHZEN				
alama abasa Bilis	•c52943	·890943	•883767	•883767	
lis · hamad	6	ó	6	6	
ATT-28. 270A 43	į.	1	논	2	
192. 47.7.	-1.54985	-1.54985	-1.78181	-1.78181	
LTATILTIN RIT (SHEWEN CHENZEN				
ATT. DANSARTH.	.893543	.893943	·883767	·883767	
Bat . Wanta	င ်	6	E	6	
ADD. PRANTON 12	3	3	4	4	
MAX. AS%.	9999999	999999.	999999.	999999.	

ni.. E Valiatio del Parameter

	AUU	VCN	815	STER	
Win	155	1 60	250	2	
WilliamzAI.	4	ឲ	ມ	છ	
DETERMINATION OF C	55	Ø	Ø	23	
والأرزل سيتابات أألأ الأ	4.5			Ø	

	MIT HOEHENKO	MEXTUR	OHNE HOEHEARCARERTUR		
	NII CHEMEK Chemzal	CALE OBERE GREUZEN	MIT OBEREN GRENZEN	OHLE GRERE Chenzel	
Windowskin Westernamia Santanamia Windowskin	4 35	1 d 8 4 3 5 2 • 5	168 4 35 2 • 5	188 4 35 0•5	
DELLICOT. D. A. BARRISTONES. BE - DALLAR WILLESS DELLICOTE ALLESS AND ARTES	•555793° € ≥	•555793 6 2 1•85922	•507331 6 0 •836032	•507331 6 0 •836032	
11:.:Uli : Win 0.0 - Hard M. 52 - Hard S 48:22-07:IU: 13 8Ax - Abb.	• 555793 6 4	, 555793 6 4 999599	•567551 6 2 999999	.507331 6 2 999999.	

NA. 5 VARIATION DER PARAMETER

	دلان	VUN	1.15	Sirr
WINDMICHTUMG	195	1 01.	ಚಿತ್ರವಿ	ξ.
WETTERKAT.	4	2	Ú	i
UEBERHOEHUNG	35	IJ	3	ઇ
WINDGESCHW.	٤.•5			13

	MIT HUEBENKO:	Ei, i Ja	ChkE nCEHEREGALEnIJA			
	MIT OBELLEN	CHNE OBELL	MIT GREATA	CHAR CHAR		
	MANAGES.	GAEAZEN	tennAZzN	GARAZEN		
WINDATCHEUNG	Inn	155	106	100		
WETTERKAT .	2	2	ė.	_		
UEBEAROLHUNG	35	ప్రప	วิรั	35		
WIEDGESCHW.	2.5	2.5	2.5	2.5		
STATISTIK OHNE	OVERTH GLEMMEN	v.				
STANDA. DARW.	.391824	.391824	•3502 4	•S6J34		
BEEL WEATE	6	6	6	ó		
ABW.>FARTOR 10	زز	ö	Ú			
MAX - ABW -		.716673	•537346	• 50% out		
STATISTIK BIT	OBEREN GRENZEN	V				
STANDARDARW.	.391824	.391824	•36024	•36644		
BEN. VERTE	6	6	6	Ó		
ABW.>FARTOR 10	ž	2	2	2		
MAX. ABW.	999999	999999.	999999	999999		

D18

NR. 5 VARIATION DER PARAMETER

	AUS	VCN	815	STEP
WINDALCHTUNG	195	168	259	2
WETTERKAT.	Zį.	냳	ь	1
UENEMHOEHUNG	35	IJ	3.10	10
WINDGESCHW.	2.5			ō

	MIT HOFHENKO	inektun	CHNE HOEHENROMMERTOL		
	MIT OBENEN	OHNE CHEAR	MIT COLLEA	CHAE COELE	
	G.LENZEN	GRENZEN	CHENKEN	G.18117EN	
WINELIGHTUNG	168	186	100	18	
WETTHLUMT.	2	2	2	<u>:</u>	
DEPARATIONALUNG	220	385	164	1.3.3	
WINDONSONK.	2.5	2.5	2.5	c • ⊃	
STATISTIK OHN	E OBELE GLENZE	N.			
STANDA. (DABW.	.320491	-323491	-312287	•3123a7	
BEN. WEATH	G	6	6	ú	
Allwass ARTOR 1	3 6	Ü	,	ತ	
MAX . ABW .	613167	613167	079430	67930:	
STATISTIK MIT	OBEREN CREKEER	Ç.			
STANDALDACK.	·323491	-320491	-312267	•513.57	
BEN. WELTE	G	ó	ú	6	
ABW.>FARTOR 1	0 2	ટ	2	2	
MAX. ABW.	999999.	9999999.	999599.	999999	

lm. 5 Valario, DEA	Paraketer				NA. 5 VARIATION DER	PARAMETER			
WINDHIGHTUNG DESEMBLESTIC WEITHERST: WINDOESSEW.	AUS 195 35 4 2•5	VON B1S 0 0 0 2 0 0	STEP Ø Ø O Ø		WINDAICHTUNG UEBEAHOEHUNG WETTERKAT. WINDGESCHW.	AUS 195 35 4 2•5	00% 818 160 855 9 355 0 0	STEP 2 13 3 8	
	MIT HOEMENKOM MIT GBEMEN GMENZEN	LENTUM CHILE GRENE GMENZEN	CHAE HOEHENKO MIT OBEALN CLENZEN	DEMERTUR OHNE OBERE ORENZEN	•	MIT HOEHENROM MIT OBEREN GRENZEN	AFRTUR OHNE OBERE G.ENKEN	CHNE HULHENS MIT OF ELLER GREADEN	unner Tün Orle Greise GLENZEN
LINELAICHTUNG UERELARLAUNG LEGGELING VINDSEUGHV.	195 35 4 2•5	195 35 4 2•5	195 35 4 2 • 5	195 35 4 2•5	WINDALCHTUNG UEBERHOEHUNG WETTEARAT. WINDGESCHW.	186 15.) 4 2.5	186 180 4 2-5	166 123 4 2.5	166 100 4 2.5
STATICTIE ORDE STATIANIARY EED. CHAIE ARV-PARICA 13	CREHE GMENZEW •690943 6 1 -1.54985	.890943 6 1 -1.54985	.863767 6 2 -1.78181	.883767 6 2 -1.78181	STATISTIK OHNE STANBARDABW. DEF. WEATE ANW.>FARTON 10 MAX. ABW.	.487169 6	-487169 6 0 677415	•4657vo 6 3 -•761585	(66796 6 7 . 761515
Dimitalia MIT Dimitanda Mit TA: ** Amila AB*** PARTON 12 RAX** AB***	058.RET. CALKZER -095945 6 3 999999.	•898943 6 3 999999•	•863767 6 4 999999•	.883767 6 4 999999.	STATISTIK MIT STANDAADARK. BEN. WERTE ANV.>FAKTOR 10 MAX. ABV.	•487169 6	.487169 6 ೭ ೨୨୨୨୨୨•	.46e79o 6 8 999959.	•46:79: 6 2 99599.
the 5 VaniAlich SER i	-araneter				NA- 5 VARIATION DEA	Parameter			. 1
WINDRICHTING UNDRHCHEING WHITEN: AT- WILDERSORW-	AUS 195 35 4	VON BIS 160 250 0 ป	STEP 2 0		WINDAICHTUNG	AUS 195	VON 515 160 259	STEP 2	ا
	2.5	Ö Ø	Ü Ø		UEBERHOEHUNG WETTERKAT. WINDGESCHW.	35 4 2•5	0 300 2 6	1.3 1 3	
		O &	Ø	MAEKTJA OHAE OBERE GREWZEN	WETTERRAT.	4	2 G	1	Cares I da Cidlo Cobeas Gaelabel
%1: ThichichC Uboham HhdiG WallangAl. :1: Domadal.	2.5 MIT HOEHENKOAP MIT CREMEN	CHNE CHERE	OHNE HOEHENKO	OHAE OBERE	WETTERRAT.	2.5 MIT HOEHENKOA. HIT OBEREN	2 6 REKTUM OHNE OBERE	CHNE HOEHEN NIT OBEAEN	CHILE CBENE
le fan af Ji 6 Vallanzal	EIT HOERENKOAM MII GRENEN GRENZEN Ice 35 4	O Ø MEKTUR OHME OBERE OHENZEN 188 35	CHNE HOEHENKO WIT OBEAEN GRENZEN 168 35	OHNE OBERE GRENZEN 188 35	WETTERNAT. WINDGESCHW. WINDAICHTUNG UEREHHOEHUNG WETTERNAT.	MIT HOEHERROAD HIT OFFEREN GRENZEN 188 180 2 2-5 UBERE GRENZEN - 387843 6	2 6 RERTUR OHNE CHERE GLENZEN 168 180 2 2.5	CHNE HOEHENS ALT OBEAEN GRENZEN Loc LOC 2	CHAL CBEAE GAEATER 186 120 E

RECHENPROGRAMM

in BASIC für HP 2114 B

Da die Kapazität des Computers nicht für das ganze Programm ausreichte, musste die Berechnung in zwei Schritter erfolgen. Zuerst wurden mit dem Programm "Berechnung" die gesuchten Werte berechnet und in Form von DATA Statements auf Lochstreifen gestanzt. Diese Daten wurden anschliessend mit dem Programm "Tabellen" geordnet und in übersichtlicher Form ausgedruckt. Die Eingangsdaten für jedes Experiment (geographische Koordinaten der Messpunkte; Höhe ü.M.; gemessene Konzentrationen, wobei negative Werte obere Grenzen bedeuten) wurden mit Lochstreifen eingelesen. Parameter und Variationsbedingungen wurden (siehe Statements 1190 bis 1260) am Terminal von Hand eingegeben.

Für die andere Reihenfolge der Parametervariation wurde das Programm leicht modifiziert.

```
1.6 - 1.1.7 = 6
70 DATA 0..6665..7164..6846.1.691.5.362
80 DATA 0..6097, .7037, .7672, .6211, .5778
188 Dala 0. .960, .9830, .9350, .6354, .6163
110 - main 507/00 .. 507760 .. 507665 .. 507650 .. 507650 .. 500550 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 500500 .. 50050
115
         baia Sebilas.
          DATA 566310..56844d..56853d..56984d...5998L4d...599335c...599336.
         - DATAT dJd745.,2325ru.,2dd415.,2dd559d.,2dd55ad.,add29d.,2dd125.
155 DATA 003030.
160 DMAA 20,-36,146,65,-50,-150,36,736,30,26,50,726,739,49,29
10w0 DIN X[15]/Y[15]/G[15]/T[15]/A[15]/A[15]/A[15]/
1010 bib offs1
1020 ABB: 2,Y: NOUND: G:GEN: T:BEN: A:BB: in:nobhb: r: plfrenna-
            REA: FAMILKHOOKD.
1160 LE: X0=567012.
1170 LET YW=201958.
1.160
            FAI ARAD FAXAYARAG
1187
            MAI U=U
            PAIAT "KETIERRATEGORIE (A:1.8:2.0:3.L:4.E:5.F:6)"
1190
            PLINT "WETTERBAT", "VON", "815"
1195
            TREUT LOSSOSIES
            PAINT "WINDAIGHTONC", "VON", "BIS", "SIEF"
12330
             TRPJI bookstakenty
             PRINT "UEBERHOELDAC", "VOR", "SIS", "WIEF"
1203
            Theor Hoshdanyah?
            FAINT "WINDGESCHW.", "KOARESTUR JACI) / NEINCL)"
1254
           16201 05:07
1270
            PRINT "GUELLSTAEAKE"
1280
           INFUL Ú
1281 PAINT
1282
            PAINT
            PAINT "2 DATA"E
 1285
1290
            Palki
1895 Fidter "15 Dara "%5", "ko", "ky", "k7", "k5", "k5", "k3", "k7", "
           FRINT "30 DATA "RS", "nd", "Ry", "RY", "J5", J.J. "37
            FOR N=1 10 4
           IF N#3 Then 1320
1314
1315 60596 1600
 1305
           Colin Biliti
1330 NEW 1 N
1340 FAIRT "9000 ERO"
1350 END
1400 1408
 1405
            FO: I=1 TO 15
 1410
             1.E1 ([[]]) c(A+[[]]))/2
 1420
           N.E.Z. 1
1430
           WEITHURN
 15.50
           PAT C=0
1510 nE10nA
 Lows
            Fun 1=1 10 15
 1619
            Lr.F n(1)=475
1 7.C3// 0S61
 1630 nEfuna
```

```
7912 Gusch 1403
 الأنسف الأراسات الأراكة
 1930 PATE - 6-130-6 "MALA" NO - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 
 157 Part 1 5+165*. +15"6616"59",""0","A1","A
المتحل فالأحال الأحالا
April (Cade Sand
1970 FAIL: C+103*N+20"DATA"59","SD","A1","A
 1578 IF 172=11.1(E/S) THEE 1978
 1974. CCaUS 1980
 1007 0125 1983
 15% | CSLUH 1430
 1000 1221
 Stan hat
 Allia Let Jedo
 would had heardans
ECS. LEW PERCERS
BEAU LET K=kC=ko
2053 LEV 26=188003
21... All
 wine has Sec
Elds Could 1914
81. 9 IF 17<1.00000E-10 THEM 2200
2110 ros %=10 To NO STEP N7
with a factor supplement
2133 Ir 50<56 WHEN 2150
2143 0010 2173
4157 Lha 50=35
2:10 Lar 16:1
2170 1EA. 1
 with this lake
 4115 (E) C=1333
115. 00200 1910
EU00 In EU<.1 THEU 2300 1
2210 Fil. P=PJ 10 K9
 Edeal Couph Saids
2230 IF 25<24 AHEN 8250
East Lill natu
 2250 181 26=29
 defd the PAPA
watt lai rero
wasta this central
 2000 Clubb 1915
20.0 Ir 17<.1 .EEN 8403
2013 Fun RosERU 10 HO STEP H7
مالية فرسية المعقام
20:00 Ir 50<56 lhEft 2350
ass. Luib asia
 2000 LEI 20=19
work Law Heane
4372 1EZI ha
 warm land bermel
ebau LEN C=5dom
 1000 Coudh 1918
 2003 15 274.1 inch 2003
 1.10 1. Dist that 2000
فالمرو للبادية الموجد
1430 LE: U=U*124M
2435 Lai 0=4300
2443 (Codh 1918
```

Ebdu sziúnh

```
3000 nr.M.
3010 LET SU=51=52=A=A1=0
3020 FOR I=1 TC 15
3030 IF X[1]<1 THEN 3185
3035 IF ABSCC[11] <1.00000E-02 THEW 3165
3050 LET U1=(U+d73)/180+3-14159
3063 LET X1=(X[[]-X0)+CCs(X1)-(Y[[]-Y0)+SIK(W1)
3365 IF KIKS THEN 3182
3070 LET Y1=(X[13-X3)*51X(W1)+(Y[13-Y0)*665(W1)
3393 LET Y9=FC1,E3*X1 tPC2,E3
3100 LET Z9=P[3,K]*X1:F[4,K]
3120 LET H1=595+H8-HEII
3125 LET TEIJ=(5/3-141/Y9/29/U)*EXF((-(\1/Y9)*2-(\(\1/Z9)*E)/2)*EJF6
3127 IF TITIS5.ddddddE-36 THEA 3162
3140 LEF A[1]=.43492*L0GCT[1]/AB5(G[1]))
3141 IF G[1]>0 THEN 3150
3148 IF AUT > THEK 3150
3143 LET ALI)=0
3144 GCTO 319C
3150 Lbf 50=50+1
3170 LET 51=51+A[1]
3180 LET 52=52+A[11+2
3161 GOTO 3190
3182 LET T[1]=0
3183 LET A[1]=999999.
3184 GCTO 519a
3185 LET I[1]=A[1]=0
3190 IF ABS(AEID) < ABS(A) 15EN 3194
3198 LET A=ATI1
3194 IF ABSCALLID<1 THEN 3196
3196 LET AI=AI+1
3198 AEAT I
3205 IF 33<1.d00000E-35 THEX 3035
3210 LET M=51/SG
3225 IF $2750-(51750) t2<1.00000E-20 THEM 3236
3230 LET 59=5cm(52/50-(51/50) (2)
3234 GOTO 3240
3835 LEI N=59=0
3236 LET 59=0
```

3240 ALTUAN

9000 END

5022 PAINT "NR. 6 VON 8.12.76"

- D21

```
2 DATA 0
19 Lara J.D.J.C.S.S.O.O.
    LATA 3,6,0,0,0,0,0,0,0
    Lain villades
    أروقا ويرويا الدييد
1.13
1 := .)
    لافائديون طلطت
    WALK BODGER
21.1
    BALA W.W. D. Ad
223
    DAIA 0.00.00.00
     Dall Course
31.5
     DAIA O.B.B.D.
Seed white the Belle Oak
400 LAIR Deliened
413 LAIA Deticolo
hills bearing the hills.
للود ولاون والأراب المالد
1110 baia dededed
1120 LATA 0.0.0.0.0
      DATA D.J.C.O
1210
      LATA C. C. C. b
1220
      LATA D. U. W. J
      LATE Saus Dad
1.3.2.4
1013 LAIA Bedebed
1320
      Lath Lobelle
14JD LATA BallaCall
1413 DAIA S.S.O.O.
1420 DATA S.J.E.S
2100 LAVA 0.0.0.0.0
      DATA C.U.O.O
2113
2123
      DATA C.O.D.J
2233
      LAIA DeDeded
      للحلامت وترينا
4....
Bake DATA J.D.U.D
2503 Lain C.J.C.D
2313 DATA 2,3,0,0
2320 DATA 0,0,0,0,0
2403 LATA 0.0.0.0.0
2413
      DATA J. S. D. O
      LAFA Jode De O
2460
31....
      DATA BABALAB
SILD DATA CADAGAD
نى::1 د
      Links Hedelie
      LATA U.O.O.O
33:13
      Latin Gededed
      Date bed at M
3444.4
      DATA B.D.D.D.
33.73
3310
      Dain Gelebel
      Dain Sedeniel
336.
3436 DATA 0.0.0.0.0
      Dala J.D. O. O
34000
      DATA D.D.D.D.D
4.1.000
      LATA D.C.O.O.
4110
      DATA N.C. N.O.
4120
      DATA W.O.O.D
42.55
      DATA Several W
4213
      DATA 2.0.0.0
4220
      DATA 0,0,0,0
4333
      bhillis Bellelleri
4314 bolle Berleugh
4323 Lan Bebellett
4400 DATA D.C.C.D
4413 DATA 0.0.0.0.0
```

4420 DATA USUSONO

```
8000 DIM A[4,4], B[4,4], C[4,4], D[4,4], E[4,4]
     nend E
6010 MAT READ D
EJI2 NAT A=ZEA
     FOR F=1 TO 4
8E14
     LET A[F,1]=D[F,1]
8015
     NEXT F
6017
      FOR 0=3 TO 4
     FOR r=1 TC 4
6030
     Inebluel fel buellers belart bu Uhin
     akad CilerleC(zerleC(zerleC(aerl
     - and B(1.1).6(2.1).n[3.1].8(4.1)
     Nr.XI r
8092 IF W12,11=0 THEN 8296
     PRIAT "An. "E
BUG G G
8100
      PAINT "VARIATION DER PARAMETER"
8102
      IF 0=0 THEN 8110
8104
      FOR F=R TO 4
6106
     [.m.f A[O,r]=b[O,r]
8138 ABAT F
6110 PalAT
8120
     PRINT " ", "NUS", "VON BIS SIEF"
     PAINT "WINDAICHTUNG", A[1,1], A[1,2]; A[1,3]; A[1,4]
     PRINT "WETTERRAT.", A[2,1], A[2,2] DA[2,3]; A[2,4]
     PRINT "UEBERBOEHUNG", AC3, 11, AC3, 2 3; AC3, 31; AC3, 41
815G
6166
     PRIAT "WIEDCESCEL." . ... [4,1]."
                                               "...14.41
8170
     Filler
wind
     F.. 157
     PRINT " "," FI HOEREN BOARREOR", "CHAE HORREN CREEK JA"
8219
     PRINT " ", "EII GBELER", "CHAE ORENE", "EII GBENER", "CHAE CBENE"
     8230
8235
     PRIMI
8240
      PAINT "WINDAICHTONG", WC1, 13, WC1, 23, WC1, 33, WC1, 43
     PRIAT "WETTERNAT.", WIE, 13, WEZ, 23, WEZ, 03, WEZ, 41
6260
     FRINT "UEPERHOEHUNG", W(3,13, X(3,2), N(3,5), N(3,41
8270
     Print "kindoeschi.". k[4,13, k[4,23, k[4,3], k[4,4]
8272
     Palat
     PAINT "STATISTIK OHNE OFFIE GRENZEN"
5.274
8276
     1:11 L=C
6478
     G050B 830a
11 618 67
     PRINT
811811
     PAINT "STATISTIK MIT OBEACK GREAZER"
8284
     1-A1 k=1s
8286
     60505 8380
828B
     PallAT
とこりか
     Parist
8292
     PAINT
6294
     CALET
8296
     Ni.A.I O
8298
     EAD
     PAINT "STANDALDARK.". k[1,1], k[1,2], k[1,3], k[1,4]
8300
     PRINT "BEA. WEATE" - WEE-13 - WEE-21 - WEE-31 - WEE-41
8310
     Pathi "AM. >rAkion la", k[3,13, k[3,1 1,k[3,5 1, L[3,4]
6336
     Paint "Max. Adv.", k[4,1], k[4,2], k[4,3], k[4,3]
8400
     Ideal Univ.
```

クロロロ EMD

 \forall

2

N

3. Mehrfache Variation der Parameter

Nr.	М	0*	Bed*	Var*	α k	ĸ k	h _k	$\bar{\bar{u}}_{k}$	b ₁	sı	b ₂	s ₂
6	9	6	11	7	228	2	189	2,72	11	0,428	9	0,436
			01	5	230	2	183	2,97	11	0,420	9	0,431
			10	5	230	2	163	2,71	11	0,421	9	0,430
			00	4	230	2	163	2,71	11	0,421	9	0,430
9	9	2	alle	max 5	244	2	144	1,18	9	0,188	9	0,188
10	7	2	alle	max 6	257	2	160	1,86	7	0,165	7	0,165
2	3	10	11	4	239	2	58	5,70	7	0,386	3	0,155
			01	5	239	2	61	5,66	7	0,386	3	0,154
			10	5	238	2	2	2,41	10	0,353	3	0,145
			00	5	238	2	2	2,41	10	0,353	3	0,145
11	12	3	alle	5	258	2	171	0,95	10	0,468	10	0,468
5	6	5	alle	max 5	194	2	196	2,37	6	0,270	6	0,270

Abkürzungen wie in Tab. 3.3., ausserdem:

O : Anzahl der oberen Grenzen

Var. : Anzahl der benötigten Variationszyklen

b₁, s₁ mit oberen Grenzen berechnet

 \mathbf{b}_{2} , \mathbf{s}_{2} ohne obere Grenzen berechnet

Alle Variationen wurden mit Höhenkorrektur durchgeführt.

Radioaktive Gase beim Atomkraftwerk

pub. In den letzten Monaten konnte die Bevölkerung in der Umgebung des für eine einzige Wetterlage gemessen. Kernkraftwerks Mühleberg wiederholt eine neue Tätigkeit beobachten: Alle 2 bis 3 Wochen einmal fuhren zwei VW-Busse im Gelände umher, kleine Apparate wurden in Abständen von zirka 200 m voneinander aufgestellt, automatisch füllten sich orange Plastikzelte mit zirka 1 Kubikmeter Luft, welche nachher von den Mitarbeitern wieder eingesammelt wurden.

Diese Feldarbeit ist ein Teil eines Projektes zur Messung der Verdünnungsfaktoren von gasförmigen Abgaben in der Umgebung des Kernkraftwerks Mühleberg. Beteiligt an diesem Projekt sind neben der Universität Bern natürlich das Kernkraftwerk selbst, die Eidg. Kommission zur Ueberwachung der Radioaktivität (KUeR), die Abteilung für die Sicherheit der Kernanlagen (ASK) und die MZA Payerne.

Beim Normalbetrieb von Kernreaktoren entstehen radioaktive Spaltgase, z. B. das Xenon-Isotop 133Xe. Ein äusserst geringer Teil dieser Radioaktivät wird über das Hochkamin mit der Abluft abgegeben. Die Frage stellt sich nun, wie stark diese Radioaktivität in der Umgebung verdünnt wird und wie gross, wie klein, die dadurch bewirkte zusätzliche Dosis für die Bevölkerung ist. Insbesondere muss man diese Fragen für den oder die kritischen Geländepunkte beantworten können, d. h. für die Punkte, an denen eine allfällige Erhöhung am grössten wäre. Da die erwartete Dosiserhöhung sehr gering (kleiner als 1 Millirem pro Jahr) und damit viel kleiner ist als die natürliche Dosisbelastung aus Boden und kosmischer Strahlung (zirka 120 Millirem pro Jahr), ist eine direkte Messung praktisch unmöglich. Man muss daher empfindlichere Messmethoden heranziehen, woraus sich die Teilnahme von Universitätsinstituten am Projekt erklären lässt. So ist im Rahmen einer Lizentiatsarbeit der Universität Bern eine experimentelle Methode mit Hilfe des Isotops 133 Xe entwickelt worden, dessen Radioaktivität in der Abluftfahne am grössten ist. Aber immer noch ist die Aufgabe recht schwierig, gilt es doch, eine geringe Anzahl Xe-Atome in einer riesigen Menge Luftmolekülen

Bis 16 Apparate im Einsatz

nachzuweisen.

Zunächst muss nun für eine bestimmte Wetterlage abgeklärt werden, in wel-

Langfristige Wirkung

Der Verlauf der Weihnachtsausstellung 1976 des bernischen Kleingewerbes im Kantonalen Gewerbemuseum im Kornhaus in Bern kann als Erfolg gewertet ndon. To jet dam Amt für Gewerbe-

cher Richtung sich die Abluftfahne bewegt. Dies wird dadurch erreicht, dass schwebende Luftballone aus dem 125 m hohen Kamin gelassen und ihre Bahnen mit optischen Instrumenten verfolgt werden. Nehmen wir an, dass bei Westwind die Ballone gegen den Weiler Salvisberg, auf einer Anhöhe zirka 1,5 km im Osten des Kernkraftwerks gelegen, treiben. Auf dieser Anhöhe werden nun von einer Equipe etliche Probenahme-Apparaturen aufgestellt. Einige Proben werden auch in Niederruntigen oder vielleicht in Buttenried, usw. gesammelt. Insgesamt werden bis 16 Apparaturen aufgestellt, die später den momentanen Verlauf der Abluftverteilung wiedergeben sollen. Schaltuhren setzen nun zu gleicher Zeit an allen Stationen einen Staubsaugermotor in Betrieb, der während rund 1/2 Stunde ein Luftzelt mit ungefähr 1 Kubikmeter Inhalt aufbläst. Rasch werden die Probenbehälter eingesammelt und ins Labor gebracht, wo die Hauptarbeit erst beginnt.

Verdünnungsfaktor

Da nämlich die radioaktiven 133-Xe-Atome nur in sehr geringer Anzahl vorhanden sind, müssen sie zunächst konzentriert werden. Hier kommen den Mitarbeitern die langjährigen Erfahrungen, welche im Labor von Prof. H. Oeschger im Umgang mit Edelgasen gewonnen wurden, zugute. In einer speziellen Apparatur wird die 1 Kubikmeter Luftmenge ohne wesentliche Xenon-Verluste auf ein Volumen von höchstens 1 bis 2 hl Gas reduziert. Diese Luftmenge mit den radioaktiven 133 Xe-Atomen wird mit Aktivkohle aufgefangen, welche in eines der speziellen Messgefässe abgefüllt wird. Durch Vergleich mit den vom Kernkraftwerk gemessenen Abgaberaten können für die eine untersuchte Wetterlage momentane Verdünnungsfaktoren berechnet werden. Diese geben an, welche Aktivität in der Umgebung bei einer gegebenen Abgaberate gefunden wird.

Das Gefährlichste: die Autofahrt

Daraus lassen sich nun noch keine zusätzlichen mittleren Jahresdosen berechnen; die Verdünnung wurde ja erst

Das Gemeinschaftsprojekt sieht vor, bis Ende 1977 die momentanen Verdünnungsfaktoren für Viele Wetterlagen zu bestimmen. Aus einer grossen Zahl von Einzelmessungen und einer Statistik über die Häufigkeit der verschiedenen Wetterlagen hofft man später mit einem Computermodell die Langzeit-Verdünnungsfaktoren abschätzen zu können. Darauf stützt sich dann eine weitere Berechnung der durch radioaktive Edelgase bewirkten mittleren Dosiserhöhungen. Diese Modellrechnungen können sich wiederum auf Erfahrungen mit Klimamodellen stützen, wie sie im Physikalischen Institut entwickelt wur-

Bedeutet der Umgang mit diesen radioaktiven Edelgasen ein Risiko für die beteiligten Wissenschafter? Keineswegs - am gefährlichsten an der ganzen Arbeit sind wohl die Autofahrten zwischen Bern und Mühleberg . . .

So sammelt das Physikalische Institut Luftproben in der Umgebung des Kernkraftwerkes Müheberg: Autobatterie (in Plastikkübel an der Stange befestigt) treibt Staubsauge motor an (oben auf der Stange vor Regen geschützt angebracht), der in etwa 30 Minuten einen Kubikmeter Luft ansaugt und in die am Boden fixierte Kunststofhülle presst.

Ramser

Diese Woche ist v den Wirtschaften: Bis morgens drei gen zusammen, ur nen, das mit Jass wird, bloss ohne versuchten, etwas viele dunkle Ram nur zwischen Wei jahr die Jasser bi in den Wirtsstube geht um die Wurs

Fleischpreise für die zwei E

Fritz Gasser, Typ «Mit etwa 20 Jal Ramsen angefange einfacher Jass, an fünf Leute betei Altjahrswoche w gibt Wirtschaften, der ganzen Woche andern nur an e Mit zwei, drei I einen Abend für d alle Spieler beteil an den Fleischpre nur die zwei bes nen. Woher da kommt, weiss ich tischen Könige F Spiel wohl kaum s

Regeln des R

Werner Fasler

4 Spieler nehmen Sechser machen mit. Es bleiben so Karte «Ecke 7» i zugleich die zwei jeweiligen Trump beim Trumpf die Die Karten werd links Sitzende vo ab. Jeder Spieler 1 x 2 Karten, tota einen «Blinden». l Stock, und davo Karte Trumpf. Is das Bälli, dann v gende Karte Tr gebende kann di zwei obersten K wurden, mit zw tauschen. Der recl de hat zuerst «Blinden». Er 1 ausspielen. Hat e dann muss er di Das Leihhalten is dann mit Trumpf überstechen. Kar Möglichkeiten a

spielt man die F

Wahl. Am Schlus