

Energy

Photovoltaics - A Disruptive Technology: Changing Global Markets, Policies, Players and Technology Prospects

Ruggero Schleicher-Tappeser, consultant, Berlin AHK, Tel Aviv, April 12, 2011

Urging problems lead to a rapid paradigm change

- Accelerating <u>climate change</u>
- Depleting oil and gas resources
- Increasing <u>energy demand</u> in emerging and developing economies
- ► A rapid transformation of the energy system is needed
- ► Governments create markets for new technologies
- ► New technologies change the energy markets
- PV is the most disruptive of the new technologies:
 - Fastest growth
 - steepest learning curve
 - biggest potential
 - but still small
- Solar Thermal: a still sleeping giant

Dramatic shift in perceptions: Renewable energy – the only way out

- Important investments in renewable electricity generation
 - 2008: US\$ 155 bn
 - Four-fold increase since 2004
 - Solar 2008: 49% growth
- High priority in economic recovery programmes
- In 2009 wind capacity in China 12,0 → 25,8 GW

Global Investments for electricity generation 2008

- 145 countries joined the new International Renewable Energy Agency IRENA
- In 2009 Renewable Energy has definitely become a top issue in international industry policy (China, USA, Japan, India, EU)

Objectives are getting more ambitious

- EU decision in 2009, compulsory:
 20% renewable energy in Europe 2020
- German RE Industry Association
 2008: 47% renewable electricity in GER 2020
- German environmental minister Röttgen 2010: his aim: 100% renewable electricity in GER 2050
- EREC (European RE Industry Association) 2010: 100% renewable Energy in Europe 2050
- WWF 2011 worldwide scenarios: 100% renewable Energy 2050
- EU Commission Energy scenarios 2011:
 ??? % in Europe 2050

Investments in renewable energy in Germany

Employment in renewable energies in **Germany**

PHOTOVOLTAICS – A DISRUPTIVE SEMICONDUCTOR TECHNOLOGY

Renewable share in final energy consumption in Germany

Electricity production in Germany 2008

Why promote photovoltaics?

A technology with unprecedented advantages:

- Applicable anywhere in the world
- Applicable <u>at all scales</u>, grid-connected and off-grid
- No problems for the <u>environment</u>
- Costs coming down rapidly, starts become <u>competitive</u> with traditional electricity production
- A practically <u>unlimited</u> potential

Disadvantage: produces power only when the sun is shining

Direct transformation of sunlight into electricity PV is a Semiconductor technology

Typical photovoltaic systems

GROWTH DYNAMICS OF THE PHOTOVOLTAIC MARKET

Germany has triggered the take-off of the world PV market

Total PV capacity installed in Germany

Development of the world photovoltaic market

Market segments in the German PV market: small and medium sizes dominate

Typical system in Spain (Menorca): 3.2 MWp

Building equilibrated market structures and competencies along the value chain takes time

- Equilibrated market structure with many private investors in DE → rather good resistance during the financial crisis
- Long history of the German PV market → established competencies along the whole value creation chain including:
 - research institutes
 - equipment producers
 - banks and investors
 - silicon, cell and module producers
 - system integrators
 - a large number of specialised craftsmen in the construction business
- Building up <u>advocacy groups for renewables</u> that can face established interests in the traditional energy business is essential and takes time

UNEXPECTED SUCCESS OF THE PROMOTION SYSTEM: GRID PARITY IS IMMINENT

Profitability of PV plants: influencing factors

- Costs of the system
 (modules [ca. 50%], rest of the system, installation)
- Running costs (ca. 1% p.a.: maintenance, insurance; taxes)
- <u>Electricity yield</u> of the system (location, orientation, quality of the installation)
- Duration of the installation, of the warranty (20-25a)
- Financing, e.g. bank credit: amount / structure / interests
- Cost of alternative electricity supply (grid, off-grid system)
- <u>Feed-in-tariff</u>: amount / duration
- Financial support for investment (taxes, other subsidies)

The feed-in-tariff system in Germany 2010

Rapidly decreasing German feed-in-tariffs: grid parity expected for 2012

Sudden rapid price decline has changed world PV markets

- Sudden rapid price decline:
 - Sufficient Si supply after completion of new facilities
 - Breakdown of the Spanish market, credit crunch
 - Massive capacity build-up, key-turn factories
 - Determined Chinese strategy to conquer markets
- Prices do not correspond to lowest available production costs. Lowest module production costs:
 - today: around 1€/Wp
 - end 2010: <0,60 €/Wp

The PV learning curve

Sources: EU Joint Research Centre - EIA - National Renewable Energy Laboratory - A.T. Kearney analysis.

Offer in 2013: costs adjusted for efficiency, bankability

Efficiency/Bankability-adjusted Supply Stack, 2013

Development of levelised costs of electricity for different technologies

LCOE Forecast by Technology, 2010-2020

© GTM Research: Concentrating Solar Power 2011

The influence of differences in solar radiation

Grid parity in Europe 2010

Grid parity in Europe 2016

Grid parity for consumers will change the game

- New technologies provide an alternative at the level of the wall outlet
- A new market at this level will affect traditional utilities and regulation
- Captive power production will increase, the amount of utility provided electricity will decrease

Grid parity retail in markets with support: Regulation and support remain most important

Grid parity wholesale

STRONG INNOVATION ALLOWS FOR SUSTAINED GROWTH

Innovations in PV development: a large variety guarantees considerable further cost reductions

Building Integrated PV (BIPV)

- Whole roofs as a first step
- Other components of the building shell require more sophisticated solutions / integration with
 - standard building components
 - planning and building processes
 - construction industry
- Very high potential but little commercial progress in the last years
- New opportunities with thin film products

© Solarsiedlungs-GmbH

Construction times / Innovation cycles

Radical acceleration of the rhythm of change compared to traditional energy technologies:

- → More rapid build-up of capacities
- → More rapid decrease of costs
- → More rapid transformation of the electricity sector

Electricity from renewable energy sources: Scaling-up times

- Industry can maintain growth rates of over 30%
- Growth is not limited by natural potentials and resources
- To ensure a rapid, continuous growth is a considerable challenge for politics and regulators
- Decisive is the rapid integration of a high share of fluctuating power production

The old base load concept

- cheap baseload electricity from large plants
- expensive peakload from more variable sources

The new paradigm

- Variable production from renewables with zero marginal cost
- Compensation with rapidly reacting sources (hydro, gas turbines)
- Storage becomes important
- Load management becomes important (smart grid)
- No need for baseload plants

THE BIG CHALLENGE: THE COMPLETE TRANSFORMATION OF THE ENERGY SYSTEM

Strategies for the Transition – a huge task

- 100% renewable energy in Europe 2050 for electricity, heat and transport is necessary and possible – McKinsey study for ECF confirms economic viability for the electricity sector
- After market creation by politics, <u>industrial dynamics and</u> <u>technology innovation</u> now <u>push for change</u>
- New players are entering the game, local and European levels become more important
- New business models and adapted regulatory frameworks are urgently needed – resistance by traditional structures risks to end in losses or decline
- A <u>collective international learning process</u> is needed for managing the transition

The most important CHALLENGES

For the Industry:

- To develop <u>new knowledge and capacities</u>
- To cooperate internationally while creating <u>local added value</u>
- To cooperate along the value chain: finding innovative and strong partners
- To develop <u>new business models</u>, e.g. for captive power generation

For the utilities:

- To <u>integrate</u> a large and increasing share of <u>fluctuating electricity production</u>
- To strive for an integrated management of energy production and consumption
- To develop <u>new business models</u>, cooperating with a wide range of different actors

For government and administration

- To develop a <u>vision for the future of the energy system</u>
- To create <u>stable investment conditions</u>, especially for new actors in the market
- To ensure steady market growth low entrance barriers, decreasing subsidies
- Ensure <u>acceptable electricity prices for consumers</u>

Energy

Thank you

www.schleicher-tappeser.eu

