Nuclear Energy in Europe: a technology history perspective Ruggero Schleicher-Tappeser guest lecture TUM School of Social Sciences and Technology Technical University of Munich 13 December, 2022 www.sustainablestrategies.eu # TECHNOLOGY HISTORY: NUCLEAR ENERGY IS HOPELESSLY OUTDATED #### sustainable strateoies #### Nuclear fission: early, seductive fruit of a scientific revolution - Henry Becquerel discovers radiation of Uranium, 1896 later called "radioactivity" by Marie and Pierre Curie - Max Planck postulates that electromagnetic *1900* radiation is portioned into discrete "quanta" - Ernest Rutherford explains radioactivity by the 1902 decay of the uranium atom into smaller elements - Albert Einstein postulates the equivalence of mass and energy in his Special Relativity Theory **Nuclear Fission**, OpenStax, CC BY 4.0 via Wikimedia Commons - Rutherford's atom model: a small positively 1911 charged heavy nucleus is orbited by negatively charged electrons - **1926-28** Heisenberg, Schrödinger and Dirac develop a mathematical formulation of quantum theory - James Chadwick discovers the neutron 1932 - Irène and Frédéric Joliot-Curie create new 1934 elements by irradiating atoms wit neutrons - Otto Hahn and Lise Meitner discover & explain 1938 nuclear fission Otto Hahn and Lise Meitner, Wikimedia Commons ### Taming the bomb: Inexorably rising costs #### Two key problems: - permanent shielding of intensive radioactive radiation on a large scale - maintaining and containing a potentially explosive chain reaction with unprecedented damage potential **Efforts for increasing safety led to inexorably rising costs** ### Where sensory experience fails: New methods allow the discovery of nano-worlds **1938-** Electron microscope **1950-** X-Ray microscope **1952-** Nuclear magnetic resonance spectrometer **1970-** MRI Magnetic Resonance Imaging **1975-** MOSFET sensors for chemicals and biochemicals **1981-** Image sensors **1961-** PET Positron Emission Tomography **Electron microscope, Siemens 1960** Miloš Jurišić, <u>CC BY-SA 3.0</u> Upheaval in physics 1900-1940 → discovery of nano-worlds where our senses and macro-world experience fail New methods allow for discoveries of entirely new worlds and opportunities, mainly since 1945 Electronics and digitalisation helped enormously to improve early pilot instruments ## Silicon-based virtual worlds: nanosciences revolutionise information technology - **1844** First useful telegraph by Morse - **1904** Tubular diode - **1946** ENIAC, first fully electronic computer with 19'000 tubes - 1947 Invention of the transistor - **1971** Microprocessor: uniform instruction set, 8'000 transistors - 2022 Microprocessor contains 80'000'000'000 transistors - **1991** Start of the Internet - **2021** 4,9 bn internet users - **2030** Internet of Things: - * 30 bn connected devices - Material sciences have triggered a new phase of evolution - The invention of the transistor was the start for a mindblowing development of microelectronics - → Independent sphere of digital information processing software development has decoupled from hardware - Digitalisation has deeply transformed our societies - The information sphere is now starting to deeply transform our handling of matter and energy ENIAC 1946, US Army photo, Wikimedia Commons Intel 80486DX2 1992. Wikimedia Commons ## Demystifiying the biological information system - No contribution to technical energy supply - **1953** Watson & Crick decrypt the basic structure of the DNA - **1990** Start of the human genome project - **2022** Human genome fully decoded - **2013** Single cell sequencing allows for detailed analysis of immune system - **2021** mRNA vaccination mitigates Covid-19 pandemic - Nanotechnologies have brought impressive advances in biology and medicine - Also for high-value organic products although great caution is necessary - Sunlight conversion efficiency: photosynthesis plants < 2%, algae in lab < 20%, versus photovoltaics > 24% - → biomass not adequate for massive technical energy supply #### **Vehicle Distance From 1 Hectare of Solar Energy of Ethanol from Sugar or Maize** Source: IEEFA: <u>India's</u> ethanol roadmap off course ## Fossil fuels Deeply entrenched industry opposes change - After 1920 modern chemistry the car industry and war fuel requirements lead to the take-of of the oil industry - In 1973 the oil crisis showed the technical and political limits of easily recoverable oil and gas - After the oil crisis, new measurement methods, digitalisation and new materials have strongly improved exploration and drilling -> - Since, dependency from the Near East has declined - Starting in 2006, horizontal drilling and new disruptive injection methods allowed for "superfracking" boosting oil and gas production in the US - Nevertheless, oil and gas reserves are limited and increasingly expensive to exploit – at difference to coal - Long growth history → strong incumbent fossil industry opposing change - As of 2000 global fossil fuel subsidies were \$5.9 trillion or 6.8 percent of GDP © Our World in Data: fossil fuel consumption Gas Oil Coal 1900 1920 1940 1960 1980 2000 202 - After oil crisis 1973, oil growth drops sharply from over 7% to 0,9% - Nuclear growth drops with delay after 1979TMI nuclear accident - Solar grows sharply after 2000 - After growth drop in 1990, coal restarts to grow faster around 2000 ### Nanosciences bring cheap electricity from sunlight | 18/6 | Photoelectric effect on Selenium | |--------------|--| | 1900 | Light quanta hypothesis (Planck) | | 1940 | Photovoltaic effect in silicon junctions | | 1950 | Explanation of PV mechanism in silicon p/n junction (Shockley) | | 1954 | PV silicon cell, 6% efficiency | | 1958 | Space satellites with PV | | 1973- | Oil companies invest in solar | | 2006-
-17 | China conquers global PV markets: 2006: 15% → 2017: 71% | | 2012 | EU governments crash their PV market | | 2019 | Top cell efficiency 47% | | 2021 | Perovskite cells 25% efficiency | | | | Photoglactric affect on Salanium 1976 - Silicon microelectronics paved the way for photovoltaics - Understanding semiconductors - High purity silicon crystals in large volumes - Coating and doping technologies - Electricity production at the atomic level → scalability - Unprecedented cost reductions in energy technology: >99% in 40 years - Costs increasingly depend on surface-dependent hardware support - Efficiency gets more important - Integration in existing surfaces gets more important - Fluctuating output depending on solar radiation requires flexibilization of the electricity system #### A disruptive and superior technology #### PHOTOVOLTAIC DEVICES - **1. Are extremely reliable**: No moving parts, no fuel, very low risks, essentially no maintenance during 30 years - **2. Can be mass-produced**: Classical economies of scale and learning curves - **3. Innovate rapidly at nano-scale**: high-potential core process, simple ancillary structures - **4. Are extremely scalable, up and down**: Energy transformation occurs at nano-level - **5. Can be deployed rapidly**: Innovation cycles ten times shorter than conventional power PV is a surface-related nanotechnology outpacing other renewable energies. Rapid further progress in efficiency, material needs and suitable surfaces is guaranteed. #### Levelized Cost of Energy Comparison—Unsubsidized Analysis Selected renewable energy generation technologies are cost-competitive with conventional generation technologies under certain circumstances ## Power electronics turns electricity into flexible universal energy | 1950 | Semiconductor power diode | |------|------------------------------------| | 1956 | Silicon controlled rectifier by GE | | 1959 | Power-MOSFET | | 1976 | Commercial power-MOSFET | | 1982 | IGBT | | 2008 | SiC JFET for 1200 V | | 2011 | SiC MOSFET for 1200 V | | 1960 | Laser diode | | 2021 | PE market 27 bn, 2028: 160 bn | | | | - Traditional electric systems: fixed-ratio transformers, electromechanical switching, frequency is constant - Semiconductor-based power electronics → digitally controlled flexible management of electric parameters - Smaller form factor & higher efficiency of equipment - Highly efficient motors with variable frequency - Higher capacity of distribution and transmission lines - No need for large power plants to keep frequency constant - Continuous flexible management of all system resources - Digitalised & power electronics based electricity system gets much more flexible - Wind turbines, EVs, HVDC transmission rely on it - Recent: Much higher efficiency with Silicon Carbide (SiC), boost with electromobility - New material treatment: Laser cutting, 3D printing... #### Nanosciences revolutionise energy storage and transport PEM (proton exchange 1966 membrane) fuel cell **Principle of reversible** 1976 intercalation of ions in stable crystal lattices for batteries Lithium-ion-battery prototype 1985 Redox-flow battery 1986 Redox-flow nano-particles 2021 Silicon-nanowire battery 2007-Aluminium-air batteries with 2010new membranes Superconductivity discovered 1911 "high-temperature" 2016 superconductors - Batteries dramatically improved through nanosciences - A wide array of new technologies is emerging since 2000 - Costs and energy density show similar progress as in PV - Boost after passing commercial threshold in mobility & grid - Promising technologies for electrical aviation and shipping - Fuel cell improvements enhance hydrogen technologies Saticoy, 100MW/400MWh battery storage system © energy storage news ### Flexibility sources for the electricity system | Flexibility source | New technologies | Regulation | New developments | |------------------------|--|---------------------------|---| | Demand side management | power electronics, communication | electricity market design | Small and large consumers produce and store electricity themselves (prosumers). They start to manage consumption, storage and exchange with the grid according to resource availability and market incentives. They integrate electricity, heat and mobility needs in one system. | | Flexible generation | power electronics
materials | electricity market design | | | Energy storage | batteries
hydrogen conversion
power electronics | energy
market design | | | Sector coupling | power electronics,
heat pumps
electric transport | energy
market design | | Appropriate market design can encourage development of flexibility resources at each system level 01.09.2015 #### Useful energy we need Elmag. Radiation / Light illumination, communication photochemistry **Electricity** communication, computing, controlling Mechanical energy transport, transforming materials ### Abandoning fire as basis of our civilisation #### **System Transformation** #### German electricity generation: no use for baseload ### old system central generation ## old system + bidirectional flows decentral generation ## new flexible system decentral generation ### System transformation meets resistance It requires some effort to understand the new flexible system if you are used to the old one – it has another logic #### The change may be comparable to the change from TV to the internet Those countries or regions who insist to stay with the old one will suffer increasing disadvantages Nuclear power with inflexible baseload hinders flexibilisation and the growth of fluctuating renewable energies Some incumbent players fear to loose with innovation and foster nostalgia for the 'good old times' when all was easy to understand ### A fully renewable energy system is possible and cheap #### **Key insights:** - Week of least renewables supply (winter) and most renewables supply (spring) is visualised - A 100% renewables-based and fully integrated energy system in 2050 will function without fail every day of the year: Even in the dark winter days the country easily copes with energy demand - Key balancing component are electrolysers (Power-to-fuels) which convert electricity to hydrogen, when electricity is available, but drastically reduce their utilisation in times of low electricity availability - Massive ramp rates in the energy system have to be managed, as well as forecasting errors require balancing ## Detailed modelling by LUT for Europe 2050: - A fully renewable energy system for Europe is possible - All sectors included - Costs lower than today: 4,7 ct/kWh - Main source: solar - Curtailment <5% - Hydrogen important for storage ## Overbuilding PV + Wind + Batteries sufficient for cheap electricity generation # Detailed modelling by Clean Power Research for Mid-USA 2050: - Fully renewable electricity generation - Costs lower than today: 4,2 c/kWh - 57 GW wind + 511 GW PV + 2.7 TWh Storage - Curtailment ca. 33% - No Hydrogen ### Nuclear nostalgia is no viable strategy ## Large nuclear reactors have failed to deliver cheap energy - newest generation has slightly improved safety but not the costs - average age of plants is over 30 years - fast breeder and high temperature reactors have been given up - nuclear power plans are strongly linked to nuclear weapon ambitions - Only Iran, China, Pakistan, India and Russia increased nuclear power output (> 2%) in the last decade ## The nuclear community now propagates small modular reactors (SMRs) - They hope for - Simpler, safer design - Cost reduction through serial production - Advanced concepts for more efficient fuel use or higher operating temperatures - Local heat use - No prototypes yet. One rather traditional concept approved by US-NRC. Difficulties for assessing safety of new concepts - 10 to 20 years away - Serious doubts on safety, cost advantages ### Doubts on SMR safety, cost and systemic advantages #### **Safety issues** - Possibly increased inherent safety countervailed by new risks - Multitude of plants and transports more susceptible to external threats - Missing safety criteria for new concepts with molten metals, reprocessing, liquid fuel, high temperatures, new dynamics - Reduced number of safety barriers #### **Basic issues of nuclear power remain:** - **Shielding of radioactive radiation** - Potentially explosive chain reaction #### **Cost issues** - Serial production cost effects require high numbers (>3000?) - New equipment production plants needed - Many interfaces between different industries - Safety and radiation protection overhead share grows for smaller units - [assuming costs related to: unit 20%, surface 35%, volume 45% \rightarrow downscaling to 1/10 \rightarrow 320% costs per power unit, not counting transport] ### Nuclear is definitely an outdated technology #### **Too costly** - Nuclear, new large : 13 20 ct/kWh → - Low chance of SMRs being cheaper - Old nuclear operation : 2,9 ct/kWh ↗ - PV power plants : 1 4 ct/kWh \searrow - Battery: 150 €/kWh capacity, assume 7k cycles → 2,1 ct/kWh ↓ - PV + Battery & assumptions, <8ct/kWh #### Too slow - Nuclear, new large: 10 y to build, 20 y to decommission - SMRs: technological readiness >10y ↗, supply chain >5y ↗, plants >3y ↑ - PV power: supply chain expansion 1–5y, plant construction 0,5 y #### Lock-in for inflexible system - Nuclear power plants are not dispatchable unsteady operation causes material stress - Nuclear delays system transformation baseload contradicts flexibility needed for renewables - Proposed use for continuous capital intensive H₂ production is too expensive Highly complex supply chain and life-cycle has long cycles and high inertia # THE CASE OF FRANCE: REACTORS & BOMBS NATIONAL MYTH BEATS ECONOMIC RATIONALITY ## European energy policy is blocked by a fundamental dissent France/Germany on nuclear power "Sans nucléaire civil, pas de nucléaire militaire, sans nucléaire militaire, pas de nucléaire civil" "Without civil nuclear power, no military nuclear power, without military nuclear power, no civil nuclear power" President Macron in his programmatic speech on the future of nuclear power on 8 December 2020 - F has the highest share of nuclear energy: 70% of electricity, 56 reactors, 61,4 GW - EDF: expected net debt end 2022: €65 bn, will be nationalised this year - 32 out of 56 reactors out of service - Macron announced in 2022: - Programme for SMRs - 6 new EPR2 reactors ready in 2035 + 8 later - Lifetime extension of reactors to 50 years - Efforts for exporting nuclear technology - Dissent between France and Germany blocks European energy policy How can we overcome this divide? ## Beginnings of French nuclear energy and bomb – core elements of national independence and pride | 1945 | De Gaulle establishes "Commissariat à l'Energie Atomique" CEA | |------|--| | | Nobel Prize & communist resistance
member Joliot-Curie + former armament
minister Dautry first directors | | | No exchange with US-AEC | | 1948 | First French reactor successful | | 1950 | Joliot-Curie expelled after signing
Moscow-led disarmament petition | | 1954 | CEA starts to prepare nuclear bomb | | 1958 | De Gaulle in power again, makes nuclear armament public | | 1960 | First successful French bomb test, US, UK had denied collaboration | | 1966 | France retires from NATO, headquarter moves to Brussels Unknown author via Wikimedia Commons | - Creation of national state monopole utility Electricité de France **EDF**, a symbol of left industry policy and union stronghold - 1954- CEA increasingly nationalistic, dissimulates armament by promoting <u>nuclear power</u> programme and cooperation with EDF, similar to Eisenhower's "Atoms for peace" (1953) CEA and EDF differ on technical and industrial strategy but agree on high priority for a French national nuclear technology Development of an own graphite reactor - 1957 Establishment of EURATOM, divergent national interests, develops own ORGEL reactor line, later abandoned - 1968- France gives up graphite reactor, switches to a "nationalised" PWR based on US license ## Against all odds France bets on nuclear Europe will have to pay – one way or the other - 1958 Establishment of reprocessing plant in Marcoule for extracting bomb-grade plutonium out of spent reactor fuel - Decision for a second military reprocessing plant in La Hague, repurposed for civilian use in 1969 - Oil crisis, decision to massively expand nuclear power for getting more independent from oil - 2001 CEA's industrial daughters merge under the roof of AREVA. Massive losses → sale of grid technology branch - 2014 € 4bn losses of AREVA → plans for large F-D-CH PV panel factory abandoned, stepwise decomposition of AREVA - France succeeds to include nuclear in EU taxonomy for facilitating the financing of nuclear projects - Today CEA is still the leading French applied research organisation with 16'000 staff: nuclear energy & armament, alternative energies, electronics, materials #### **FACING AN INCONVENIENT TRUTH** - The nuclear adventure of France may lead to huge costs and competitive disadvantages for Europe - France will not give up its nuclear armament (bombs, ships) - → The only way to give up nuclear electricity ambitions and agree on a renewable path for Europe is to clearly separate civilian and military use of nuclear power - → This may require additional European funding for the French bomb ARE WE READY TO AGREE ON THAT? ### Thank you for your attention www.sustainablestrategies.eu more details concerning this subject in my blog: sustainablestrategies.substack.com